import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("nouamanetazi/hf-ar-134000") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Combine history and new message into a single prompt prompt = system_message + "\n\n" for user_msg, assistant_msg in history: if user_msg: prompt += f"User: {user_msg}\n" if assistant_msg: prompt += f"Assistant: {assistant_msg}\n" prompt += f"User: {message}\nAssistant:" response = "" # Use text-generation instead of chat_completion for token in client.text_generation( prompt, max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()