Spaces:
Sleeping
Sleeping
upload codes
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- annotator/canny/__init__.py +6 -0
- annotator/cielab/__init__.py +47 -0
- annotator/cielab/rayleigh/__init__.py +8 -0
- annotator/cielab/rayleigh/palette.py +132 -0
- annotator/cielab/rayleigh/util.py +270 -0
- annotator/content/__init__.py +23 -0
- annotator/entityseg/__init__.py +93 -0
- annotator/entityseg/configs/Base-Mask2Former.yaml +49 -0
- annotator/entityseg/configs/cropformer_hornet_3x.yaml +70 -0
- annotator/entityseg/mask2former/__init__.py +11 -0
- annotator/entityseg/mask2former/config.py +139 -0
- annotator/entityseg/mask2former/cropformer_model.py +678 -0
- annotator/entityseg/mask2former/data/__init__.py +1 -0
- annotator/entityseg/mask2former/data/dataset_mappers/__init__.py +1 -0
- annotator/entityseg/mask2former/data/dataset_mappers/crop_augmentations.py +421 -0
- annotator/entityseg/mask2former/maskformer_model.py +446 -0
- annotator/entityseg/mask2former/modeling/__init__.py +7 -0
- annotator/entityseg/mask2former/modeling/backbone/__init__.py +1 -0
- annotator/entityseg/mask2former/modeling/backbone/hornet.py +363 -0
- annotator/entityseg/mask2former/modeling/backbone/swin.py +770 -0
- annotator/entityseg/mask2former/modeling/criterion.py +263 -0
- annotator/entityseg/mask2former/modeling/criterion_view.py +288 -0
- annotator/entityseg/mask2former/modeling/matcher.py +189 -0
- annotator/entityseg/mask2former/modeling/matcher_view.py +194 -0
- annotator/entityseg/mask2former/modeling/meta_arch/__init__.py +1 -0
- annotator/entityseg/mask2former/modeling/meta_arch/mask_former_head.py +133 -0
- annotator/entityseg/mask2former/modeling/meta_arch/per_pixel_baseline.py +243 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/__init__.py +1 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/fpn.py +312 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/msdeformattn.py +358 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/functions/__init__.py +13 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/functions/ms_deform_attn_func.py +72 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/make.sh +13 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/modules/__init__.py +12 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py +125 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/setup.py +78 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.cpp +46 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.h +38 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.cu +158 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h +35 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_im2col_cuda.cuh +1332 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/ms_deform_attn.h +67 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/vision.cpp +21 -0
- annotator/entityseg/mask2former/modeling/pixel_decoder/ops/test.py +92 -0
- annotator/entityseg/mask2former/modeling/transformer_decoder/__init__.py +5 -0
- annotator/entityseg/mask2former/modeling/transformer_decoder/cropformer_transformer_decoder.py +595 -0
- annotator/entityseg/mask2former/modeling/transformer_decoder/mask2former_transformer_decoder.py +461 -0
- annotator/entityseg/mask2former/modeling/transformer_decoder/maskformer_transformer_decoder.py +188 -0
- annotator/entityseg/mask2former/modeling/transformer_decoder/position_encoding.py +134 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 OpenMMLab
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
annotator/canny/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
class CannyDetector:
|
5 |
+
def __call__(self, img, low_threshold=100, high_threshold=200):
|
6 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
annotator/cielab/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.getcwd())
|
4 |
+
sys.path.append(os.path.join(os.getcwd(), 'rayleigh'))
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from skimage.color import rgb2lab
|
8 |
+
from .rayleigh import Palette
|
9 |
+
from .rayleigh.util import histogram_colors_strict, smooth_histogram, color_hist_to_palette_image
|
10 |
+
|
11 |
+
|
12 |
+
class CIELabDetector:
|
13 |
+
|
14 |
+
MAX_DIMENSION = 240 + 1
|
15 |
+
|
16 |
+
def __init__(self, sigma=10, num_hues=11, num_light=5, num_sat=5):
|
17 |
+
self.sigma = sigma
|
18 |
+
self.palette = Palette(num_hues=num_hues, light_range=num_light, sat_range=num_sat)
|
19 |
+
|
20 |
+
def __call__(self, img):
|
21 |
+
# Handle grayscale and RGBA images.
|
22 |
+
# TODO: Should be smarter here in the future, but for now simply remove
|
23 |
+
# the alpha channel if present.
|
24 |
+
if img.ndim == 2:
|
25 |
+
img = np.tile(img[:, :, np.newaxis], (1, 1, 3))
|
26 |
+
elif img.ndim == 4:
|
27 |
+
img = img[:, :, :3]
|
28 |
+
img = img[:,:,:3]
|
29 |
+
|
30 |
+
h, w, d = tuple(img.shape)
|
31 |
+
h_stride = int(h / self.MAX_DIMENSION + 1)
|
32 |
+
w_stride = int(w / self.MAX_DIMENSION + 1)
|
33 |
+
img = img[::h_stride, ::w_stride, :]
|
34 |
+
|
35 |
+
# Convert to L*a*b colors.
|
36 |
+
h, w, d = img.shape
|
37 |
+
lab_array = rgb2lab(img).reshape((h * w, d))
|
38 |
+
|
39 |
+
# compute hist
|
40 |
+
hist = histogram_colors_strict(lab_array, self.palette)
|
41 |
+
hist = smooth_histogram(hist, self.palette, self.sigma)
|
42 |
+
return hist
|
43 |
+
|
44 |
+
def hist_to_palette(self, hist):
|
45 |
+
# hist to image
|
46 |
+
plt = color_hist_to_palette_image(hist, self.palette)
|
47 |
+
return (plt * 255).astype(np.uint8)
|
annotator/cielab/rayleigh/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Rayleigh is an open-source system for quickly searching medium-sized image
|
3 |
+
collections by multiple colors given as a palette or derived from a query image.
|
4 |
+
"""
|
5 |
+
|
6 |
+
|
7 |
+
from .palette import Palette
|
8 |
+
from .util import *
|
annotator/cielab/rayleigh/palette.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Encapsulate the list of hex colors and array of Lab values representations
|
3 |
+
of a palette (codebook) of colors.
|
4 |
+
|
5 |
+
Provide methods to work with color conversion and the Palette class.
|
6 |
+
|
7 |
+
Provide a parametrized method to generate a palette that covers the range
|
8 |
+
of colors.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
from skimage.color import hsv2rgb, rgb2lab
|
14 |
+
from skimage.io import imsave
|
15 |
+
from sklearn.metrics import euclidean_distances
|
16 |
+
|
17 |
+
from .util import rgb2hex
|
18 |
+
|
19 |
+
|
20 |
+
class Palette(object):
|
21 |
+
"""
|
22 |
+
Create a color palette (codebook) in the form of a 2D grid of colors,
|
23 |
+
as described in the parameters list below.
|
24 |
+
Further, the rightmost column has num_hues gradations from black to white.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
num_hues : int
|
29 |
+
number of colors with full lightness and saturation, in the middle
|
30 |
+
sat_range : int
|
31 |
+
number of rows above middle row that show
|
32 |
+
the same hues with decreasing saturation.
|
33 |
+
light_range : int
|
34 |
+
number of rows below middle row that show
|
35 |
+
the same hues with decreasing lightness.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
palette: rayleigh.Palette
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, num_hues=8, sat_range=2, light_range=2):
|
43 |
+
height = 1 + sat_range + (2 * light_range - 1)
|
44 |
+
# generate num_hues+1 hues, but don't take the last one:
|
45 |
+
# hues are on a circle, and we would be oversampling the origin
|
46 |
+
hues = np.tile(np.linspace(0, 1, num_hues + 1)[:-1], (height, 1))
|
47 |
+
if num_hues == 8:
|
48 |
+
hues = np.tile(np.array(
|
49 |
+
[0., 0.10, 0.15, 0.28, 0.51, 0.58, 0.77, 0.85]), (height, 1))
|
50 |
+
if num_hues == 9:
|
51 |
+
hues = np.tile(np.array(
|
52 |
+
[0., 0.10, 0.15, 0.28, 0.49, 0.54, 0.60, 0.7, 0.87]), (height, 1))
|
53 |
+
if num_hues == 10:
|
54 |
+
hues = np.tile(np.array(
|
55 |
+
[0., 0.10, 0.15, 0.28, 0.49, 0.54, 0.60, 0.66, 0.76, 0.87]), (height, 1))
|
56 |
+
elif num_hues == 11:
|
57 |
+
hues = np.tile(np.array(
|
58 |
+
[0.0, 0.0833, 0.166, 0.25,
|
59 |
+
0.333, 0.5, 0.56333,
|
60 |
+
0.666, 0.73, 0.803,
|
61 |
+
0.916]), (height, 1))
|
62 |
+
|
63 |
+
sats = np.hstack((
|
64 |
+
np.linspace(0, 1, sat_range + 2)[1:-1],
|
65 |
+
1,
|
66 |
+
[1] * (light_range),
|
67 |
+
[.4] * (light_range - 1),
|
68 |
+
))
|
69 |
+
lights = np.hstack((
|
70 |
+
[1] * sat_range,
|
71 |
+
1,
|
72 |
+
np.linspace(1, 0.2, light_range + 2)[1:-1],
|
73 |
+
np.linspace(1, 0.2, light_range + 2)[1:-2],
|
74 |
+
))
|
75 |
+
|
76 |
+
sats = np.tile(np.atleast_2d(sats).T, (1, num_hues))
|
77 |
+
lights = np.tile(np.atleast_2d(lights).T, (1, num_hues))
|
78 |
+
colors = hsv2rgb(np.dstack((hues, sats, lights)))
|
79 |
+
grays = np.tile(
|
80 |
+
np.linspace(1, 0, height)[:, np.newaxis, np.newaxis], (1, 1, 3))
|
81 |
+
|
82 |
+
self.rgb_image = np.hstack((colors, grays))
|
83 |
+
|
84 |
+
# Make a nice histogram ordering of the hues and grays
|
85 |
+
h, w, d = colors.shape
|
86 |
+
color_array = colors.T.reshape((d, w * h)).T
|
87 |
+
h, w, d = grays.shape
|
88 |
+
gray_array = grays.T.reshape((d, w * h)).T
|
89 |
+
|
90 |
+
self.rgb_array = np.vstack((color_array, gray_array))
|
91 |
+
self.lab_array = rgb2lab(self.rgb_array[None, :, :]).squeeze()
|
92 |
+
self.hex_list = [rgb2hex(row) for row in self.rgb_array]
|
93 |
+
#assert(np.all(self.rgb_array == self.rgb_array[None, :, :].squeeze()))
|
94 |
+
|
95 |
+
self.distances = euclidean_distances(self.lab_array, squared=True)
|
96 |
+
|
97 |
+
def output(self, dirname, html=False):
|
98 |
+
"""
|
99 |
+
Output an image of the palette, josn list of the hex
|
100 |
+
colors, and an HTML color picker for it.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
dirname : string
|
105 |
+
directory for the files to be output
|
106 |
+
"""
|
107 |
+
def get_palette_html():
|
108 |
+
"""
|
109 |
+
Return HTML for a color picker using the given palette.
|
110 |
+
"""
|
111 |
+
html = """
|
112 |
+
<style>
|
113 |
+
span {
|
114 |
+
width: 20px;
|
115 |
+
height: 20px;
|
116 |
+
margin: 2px;
|
117 |
+
padding: 0px;
|
118 |
+
display: inline-block;
|
119 |
+
}
|
120 |
+
</style>
|
121 |
+
"""
|
122 |
+
for row in self.rgb_image:
|
123 |
+
for rgb_color in row:
|
124 |
+
s = '<a id="{0}"><span style="background-color: {0}" /></a>\n'
|
125 |
+
html += s.format(rgb2hex(rgb_color))
|
126 |
+
html += "<br />\n"
|
127 |
+
return html
|
128 |
+
|
129 |
+
imsave(os.path.join(dirname, 'palette.png'), (self.rgb_image*255).astype(np.uint8))
|
130 |
+
if html:
|
131 |
+
with open(os.path.join(dirname, 'palette.html'), 'w') as f:
|
132 |
+
f.write(get_palette_html())
|
annotator/cielab/rayleigh/util.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import tempfile
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.metrics import euclidean_distances
|
6 |
+
from skimage.io import imsave
|
7 |
+
|
8 |
+
|
9 |
+
def rgb2hex(rgb_number):
|
10 |
+
"""
|
11 |
+
Args:
|
12 |
+
- rgb_number (sequence of float)
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
- hex_number (string)
|
16 |
+
"""
|
17 |
+
return '#%02x%02x%02x' % tuple([int(np.round(val * 255)) for val in rgb_number])
|
18 |
+
|
19 |
+
|
20 |
+
def hex2rgb(hexcolor_str):
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
- hexcolor_str (string): e.g. '#ffffff' or '33cc00'
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
- rgb_color (sequence of floats): e.g. (0.2, 0.3, 0)
|
27 |
+
"""
|
28 |
+
color = hexcolor_str.strip('#')
|
29 |
+
rgb = lambda x: round(int(x, 16) / 255., 5)
|
30 |
+
return (rgb(color[:2]), rgb(color[2:4]), rgb(color[4:6]))
|
31 |
+
|
32 |
+
|
33 |
+
def color_hist_to_palette_image(color_hist, palette, percentile=90,
|
34 |
+
width=200, height=50, filename=None):
|
35 |
+
"""
|
36 |
+
Output the main colors in the histogram to a "palette image."
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
color_hist : (K,) ndarray
|
41 |
+
palette : rayleigh.Palette
|
42 |
+
percentile : int, optional:
|
43 |
+
Output only colors above this percentile of prevalence in the histogram.
|
44 |
+
filename : string, optional:
|
45 |
+
If given, save the resulting image to file.
|
46 |
+
|
47 |
+
Returns
|
48 |
+
-------
|
49 |
+
rgb_image : ndarray
|
50 |
+
"""
|
51 |
+
ind = np.argsort(-color_hist)
|
52 |
+
ind = ind[color_hist[ind] > np.percentile(color_hist, percentile)]
|
53 |
+
hex_list = np.take(palette.hex_list, ind)
|
54 |
+
values = color_hist[ind]
|
55 |
+
rgb_image = palette_query_to_rgb_image(dict(zip(hex_list, values)))
|
56 |
+
if filename:
|
57 |
+
imsave(filename, rgb_image)
|
58 |
+
return rgb_image
|
59 |
+
|
60 |
+
|
61 |
+
def palette_query_to_rgb_image(palette_query, width=200, height=50):
|
62 |
+
"""
|
63 |
+
Convert a list of hex colors and their values to an RGB image of given
|
64 |
+
width and height.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
- palette_query (dict):
|
68 |
+
a dictionary of hex colors to unnormalized values,
|
69 |
+
e.g. {'#ffffff': 20, '#33cc00': 0.4}.
|
70 |
+
"""
|
71 |
+
hex_list, values = zip(*palette_query.items())
|
72 |
+
values = np.array(values)
|
73 |
+
values /= values.sum()
|
74 |
+
nums = np.array(values * width, dtype=int)
|
75 |
+
rgb_arrays = (np.tile(np.array(hex2rgb(x)), (num, 1))
|
76 |
+
for x, num in zip(hex_list, nums))
|
77 |
+
rgb_array = np.vstack(list(rgb_arrays))
|
78 |
+
rgb_image = rgb_array[np.newaxis, :, :]
|
79 |
+
rgb_image = np.tile(rgb_image, (height, 1, 1))
|
80 |
+
return rgb_image
|
81 |
+
|
82 |
+
|
83 |
+
def plot_histogram(color_hist, palette, plot_filename=None):
|
84 |
+
"""
|
85 |
+
Return Figure containing the color palette histogram.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
- color_hist (K, ndarray)
|
89 |
+
|
90 |
+
- palette (Palette)
|
91 |
+
|
92 |
+
- plot_filename (string) [default=None]:
|
93 |
+
Save histogram to this file, if given.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
- fig (Figure)
|
97 |
+
"""
|
98 |
+
fig = plt.figure(figsize=(5, 3), dpi=150)
|
99 |
+
ax = fig.add_subplot(111)
|
100 |
+
ax.bar(
|
101 |
+
range(len(color_hist)), color_hist,
|
102 |
+
color=palette.hex_list, edgecolor='black')
|
103 |
+
ax.set_ylim((0, 0.3))
|
104 |
+
ax.xaxis.set_ticks([])
|
105 |
+
ax.set_xlim((0, len(palette.hex_list)))
|
106 |
+
if plot_filename:
|
107 |
+
fig.savefig(plot_filename, dpi=150, facecolor='none')
|
108 |
+
return fig
|
109 |
+
|
110 |
+
|
111 |
+
def output_histogram_base64(color_hist, palette):
|
112 |
+
"""
|
113 |
+
Return base64-encoded image containing the color palette histogram.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
- color_hist (K, ndarray)
|
117 |
+
|
118 |
+
- palette (Palette)
|
119 |
+
|
120 |
+
Returns:
|
121 |
+
- data_uri (base64 encoded string)
|
122 |
+
"""
|
123 |
+
_, tfname = tempfile.mkstemp('.png')
|
124 |
+
plot_histogram(color_hist, palette, tfname)
|
125 |
+
data_uri = open(tfname, 'rb').read().encode('base64').replace('\n', '')
|
126 |
+
os.remove(tfname)
|
127 |
+
return data_uri
|
128 |
+
|
129 |
+
|
130 |
+
def histogram_colors_strict(lab_array, palette, plot_filename=None):
|
131 |
+
"""
|
132 |
+
Return a palette histogram of colors in the image.
|
133 |
+
|
134 |
+
Parameters
|
135 |
+
----------
|
136 |
+
lab_array : (N,3) ndarray
|
137 |
+
The L*a*b color of each of N pixels.
|
138 |
+
palette : rayleigh.Palette
|
139 |
+
Containing K colors.
|
140 |
+
plot_filename : string, optional
|
141 |
+
If given, save histogram to this filename.
|
142 |
+
|
143 |
+
Returns
|
144 |
+
-------
|
145 |
+
color_hist : (K,) ndarray
|
146 |
+
"""
|
147 |
+
# This is the fastest way that I've found.
|
148 |
+
# >>> %%timeit -n 200 from sklearn.metrics import euclidean_distances
|
149 |
+
# >>> euclidean_distances(palette, lab_array, squared=True)
|
150 |
+
dist = euclidean_distances(palette.lab_array, lab_array, squared=True).T
|
151 |
+
min_ind = np.argmin(dist, axis=1)
|
152 |
+
num_colors = palette.lab_array.shape[0]
|
153 |
+
num_pixels = lab_array.shape[0]
|
154 |
+
color_hist = 1. * np.bincount(min_ind, minlength=num_colors) / num_pixels
|
155 |
+
if plot_filename is not None:
|
156 |
+
plot_histogram(color_hist, palette, plot_filename)
|
157 |
+
return color_hist
|
158 |
+
|
159 |
+
|
160 |
+
def histogram_colors_smoothed(lab_array, palette, sigma=10,
|
161 |
+
plot_filename=None, direct=True):
|
162 |
+
"""
|
163 |
+
Returns a palette histogram of colors in the image, smoothed with
|
164 |
+
a Gaussian. Can smooth directly per-pixel, or after computing a strict
|
165 |
+
histogram.
|
166 |
+
|
167 |
+
Parameters
|
168 |
+
----------
|
169 |
+
lab_array : (N,3) ndarray
|
170 |
+
The L*a*b color of each of N pixels.
|
171 |
+
palette : rayleigh.Palette
|
172 |
+
Containing K colors.
|
173 |
+
sigma : float
|
174 |
+
Variance of the smoothing Gaussian.
|
175 |
+
direct : bool, optional
|
176 |
+
If True, constructs a smoothed histogram directly from pixels.
|
177 |
+
If False, constructs a nearest-color histogram and then smoothes it.
|
178 |
+
|
179 |
+
Returns
|
180 |
+
-------
|
181 |
+
color_hist : (K,) ndarray
|
182 |
+
"""
|
183 |
+
if direct:
|
184 |
+
color_hist_smooth = histogram_colors_with_smoothing(
|
185 |
+
lab_array, palette, sigma)
|
186 |
+
else:
|
187 |
+
color_hist_strict = histogram_colors_strict(lab_array, palette)
|
188 |
+
color_hist_smooth = smooth_histogram(color_hist_strict, palette, sigma)
|
189 |
+
if plot_filename is not None:
|
190 |
+
plot_histogram(color_hist_smooth, palette, plot_filename)
|
191 |
+
return color_hist_smooth
|
192 |
+
|
193 |
+
|
194 |
+
def smooth_histogram(color_hist, palette, sigma=10):
|
195 |
+
"""
|
196 |
+
Smooth the given palette histogram with a Gaussian of variance sigma.
|
197 |
+
|
198 |
+
Parameters
|
199 |
+
----------
|
200 |
+
color_hist : (K,) ndarray
|
201 |
+
palette : rayleigh.Palette
|
202 |
+
containing K colors.
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
color_hist_smooth : (K,) ndarray
|
207 |
+
"""
|
208 |
+
n = 2. * sigma ** 2
|
209 |
+
weights = np.exp(-palette.distances / n)
|
210 |
+
norm_weights = weights / weights.sum(1)[:, np.newaxis]
|
211 |
+
color_hist_smooth = (norm_weights * color_hist).sum(1)
|
212 |
+
color_hist_smooth[color_hist_smooth < 1e-5] = 0
|
213 |
+
return color_hist_smooth
|
214 |
+
|
215 |
+
|
216 |
+
def histogram_colors_with_smoothing(lab_array, palette, sigma=10):
|
217 |
+
"""
|
218 |
+
Assign colors in the image to nearby colors in the palette, weighted by
|
219 |
+
distance in Lab color space.
|
220 |
+
|
221 |
+
Parameters
|
222 |
+
----------
|
223 |
+
lab_array (N,3) ndarray:
|
224 |
+
N is the number of data points, columns are L, a, b values.
|
225 |
+
palette : rayleigh.Palette
|
226 |
+
containing K colors.
|
227 |
+
sigma : float
|
228 |
+
(0,1] value to control the steepness of exponential falloff.
|
229 |
+
To see the effect:
|
230 |
+
|
231 |
+
>>> from pylab import *
|
232 |
+
>>> ds = linspace(0,5000) # squared distance
|
233 |
+
>>> sigma=10; plot(ds, exp(-ds/(2*sigma**2)), label='$\sigma=%.1f$'%sigma)
|
234 |
+
>>> sigma=20; plot(ds, exp(-ds/(2*sigma**2)), label='$\sigma=%.1f$'%sigma)
|
235 |
+
>>> sigma=40; plot(ds, exp(-ds/(2*sigma**2)), label='$\sigma=%.1f$'%sigma)
|
236 |
+
>>> ylim([0,1]); legend();
|
237 |
+
>>> xlabel('Squared distance'); ylabel('Weight');
|
238 |
+
>>> title('Exponential smoothing')
|
239 |
+
>>> #plt.savefig('exponential_smoothing.png', dpi=300)
|
240 |
+
|
241 |
+
sigma=20 seems reasonable: hits 0 around squared distance of 4000.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
color_hist : (K,) ndarray
|
245 |
+
the normalized, smooth histogram of colors.
|
246 |
+
"""
|
247 |
+
dist = euclidean_distances(palette.lab_array, lab_array, squared=True).T
|
248 |
+
n = 2. * sigma ** 2
|
249 |
+
weights = np.exp(-dist / n)
|
250 |
+
|
251 |
+
# normalize by sum: if a color is equally well represented by several colors
|
252 |
+
# it should not contribute much to the overall histogram
|
253 |
+
normalizing = weights.sum(1)
|
254 |
+
normalizing[normalizing == 0] = 1e16
|
255 |
+
normalized_weights = weights / normalizing[:, np.newaxis]
|
256 |
+
|
257 |
+
color_hist = normalized_weights.sum(0)
|
258 |
+
color_hist /= lab_array.shape[0]
|
259 |
+
color_hist[color_hist < 1e-5] = 0
|
260 |
+
return color_hist
|
261 |
+
|
262 |
+
|
263 |
+
def makedirs(dirname):
|
264 |
+
"Does what mkdir -p does, and returns dirname."
|
265 |
+
if not os.path.exists(dirname):
|
266 |
+
try:
|
267 |
+
os.makedirs(dirname)
|
268 |
+
except:
|
269 |
+
print("Exception on os.makedirs")
|
270 |
+
return dirname
|
annotator/content/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import AutoProcessor, CLIPModel
|
7 |
+
|
8 |
+
from annotator.util import annotator_ckpts_path
|
9 |
+
|
10 |
+
|
11 |
+
class ContentDetector:
|
12 |
+
def __init__(self, model_name="openai/clip-vit-large-patch14"):
|
13 |
+
|
14 |
+
self.model = CLIPModel.from_pretrained(model_name, cache_dir=annotator_ckpts_path).cuda().eval()
|
15 |
+
self.processor = AutoProcessor.from_pretrained(model_name, cache_dir=annotator_ckpts_path)
|
16 |
+
|
17 |
+
def __call__(self, img):
|
18 |
+
with torch.no_grad():
|
19 |
+
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
20 |
+
inputs = self.processor(images=[img], return_tensors="pt").to('cuda')
|
21 |
+
image_features = self.model.get_image_features(**inputs)
|
22 |
+
content_emb = image_features[0].detach().cpu().numpy()
|
23 |
+
return content_emb
|
annotator/entityseg/__init__.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detectron2/blob/master/demo/demo.py
|
3 |
+
import argparse
|
4 |
+
import glob
|
5 |
+
import multiprocessing as mp
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
sys.path.insert(1, os.getcwd())
|
9 |
+
|
10 |
+
import tempfile
|
11 |
+
import time
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import numpy as np
|
16 |
+
import tqdm
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from detectron2.config import get_cfg
|
20 |
+
from detectron2.data.detection_utils import read_image
|
21 |
+
from detectron2.projects.deeplab import add_deeplab_config
|
22 |
+
from detectron2.utils.logger import setup_logger
|
23 |
+
|
24 |
+
from mask2former import add_maskformer2_config
|
25 |
+
from predictor import VisualizationDemo
|
26 |
+
|
27 |
+
from annotator.util import annotator_ckpts_path
|
28 |
+
|
29 |
+
|
30 |
+
model_url = "https://huggingface.co/datasets/qqlu1992/Adobe_EntitySeg/resolve/main/CropFormer_model/Entity_Segmentation/CropFormer_hornet_3x.pth"
|
31 |
+
|
32 |
+
|
33 |
+
def make_colors():
|
34 |
+
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
|
35 |
+
colors = []
|
36 |
+
for cate in COCO_CATEGORIES:
|
37 |
+
colors.append(cate["color"])
|
38 |
+
return colors
|
39 |
+
|
40 |
+
|
41 |
+
class EntitysegDetector:
|
42 |
+
|
43 |
+
def __init__(self, confidence_threshold=0.5):
|
44 |
+
cfg = get_cfg()
|
45 |
+
add_deeplab_config(cfg)
|
46 |
+
add_maskformer2_config(cfg)
|
47 |
+
|
48 |
+
workdir = os.getcwd()
|
49 |
+
config_file = f"{workdir}/annotator/entityseg/configs/cropformer_hornet_3x.yaml"
|
50 |
+
model_path = f'{annotator_ckpts_path}/CropFormer_hornet_3x_03823a.pth'
|
51 |
+
# Authentication required
|
52 |
+
# if not os.path.exists(model_path):
|
53 |
+
# from basicsr.utils.download_util import load_file_from_url
|
54 |
+
# load_file_from_url(model_url, model_dir=annotator_ckpts_path)
|
55 |
+
|
56 |
+
cfg.merge_from_file(config_file)
|
57 |
+
opts = ['MODEL.WEIGHTS', model_path]
|
58 |
+
cfg.merge_from_list(opts)
|
59 |
+
cfg.freeze()
|
60 |
+
|
61 |
+
self.confidence_threshold = confidence_threshold
|
62 |
+
|
63 |
+
self.colors = make_colors()
|
64 |
+
self.demo = VisualizationDemo(cfg)
|
65 |
+
|
66 |
+
|
67 |
+
def __call__(self, image):
|
68 |
+
predictions = self.demo.run_on_image(image)
|
69 |
+
##### color_mask
|
70 |
+
pred_masks = predictions["instances"].pred_masks
|
71 |
+
pred_scores = predictions["instances"].scores
|
72 |
+
|
73 |
+
# select by confidence threshold
|
74 |
+
selected_indexes = (pred_scores >= self.confidence_threshold)
|
75 |
+
selected_scores = pred_scores[selected_indexes]
|
76 |
+
selected_masks = pred_masks[selected_indexes]
|
77 |
+
_, m_H, m_W = selected_masks.shape
|
78 |
+
mask_id = np.zeros((m_H, m_W), dtype=np.uint8)
|
79 |
+
|
80 |
+
# rank
|
81 |
+
selected_scores, ranks = torch.sort(selected_scores)
|
82 |
+
ranks = ranks + 1
|
83 |
+
for index in ranks:
|
84 |
+
mask_id[(selected_masks[index-1]==1).cpu().numpy()] = int(index)
|
85 |
+
unique_mask_id = np.unique(mask_id)
|
86 |
+
|
87 |
+
color_mask = np.zeros(image.shape, dtype=np.uint8)
|
88 |
+
for count in unique_mask_id:
|
89 |
+
if count == 0:
|
90 |
+
continue
|
91 |
+
color_mask[mask_id==count] = self.colors[count % len(self.colors)]
|
92 |
+
|
93 |
+
return color_mask
|
annotator/entityseg/configs/Base-Mask2Former.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ENTITY:
|
2 |
+
ENABLE: True
|
3 |
+
MODEL:
|
4 |
+
BACKBONE:
|
5 |
+
FREEZE_AT: 0
|
6 |
+
NAME: "build_resnet_backbone"
|
7 |
+
WEIGHTS: "R-50.pkl"
|
8 |
+
PIXEL_MEAN: [123.675, 116.280, 103.530]
|
9 |
+
PIXEL_STD: [58.395, 57.120, 57.375]
|
10 |
+
RESNETS:
|
11 |
+
DEPTH: 50
|
12 |
+
STEM_TYPE: "basic" # not used
|
13 |
+
STEM_OUT_CHANNELS: 64
|
14 |
+
STRIDE_IN_1X1: False
|
15 |
+
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
16 |
+
# NORM: "SyncBN"
|
17 |
+
RES5_MULTI_GRID: [1, 1, 1] # not used
|
18 |
+
DATASETS:
|
19 |
+
TRAIN: ("entityv2_entity_train_01",)
|
20 |
+
TEST: ("entityv2_entity_val_01",)
|
21 |
+
SOLVER:
|
22 |
+
STEPS: (30525, 33138)
|
23 |
+
MAX_ITER: 34375
|
24 |
+
IMS_PER_BATCH: 16
|
25 |
+
BASE_LR: 0.0001
|
26 |
+
WARMUP_FACTOR: 1.0
|
27 |
+
WARMUP_ITERS: 0
|
28 |
+
WEIGHT_DECAY: 0.05
|
29 |
+
OPTIMIZER: "ADAMW"
|
30 |
+
LR_SCHEDULER_NAME: "WarmupPolyLR"
|
31 |
+
BACKBONE_MULTIPLIER: 0.1
|
32 |
+
CLIP_GRADIENTS:
|
33 |
+
ENABLED: True
|
34 |
+
CLIP_TYPE: "full_model"
|
35 |
+
CLIP_VALUE: 0.01
|
36 |
+
NORM_TYPE: 2.0
|
37 |
+
AMP:
|
38 |
+
ENABLED: True
|
39 |
+
INPUT:
|
40 |
+
MASK_FORMAT: "bitmask"
|
41 |
+
FORMAT: "RGB"
|
42 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
43 |
+
DATASET_MAPPER_NAME: "entity_crop"
|
44 |
+
TEST:
|
45 |
+
EVAL_PERIOD: 400000
|
46 |
+
DATALOADER:
|
47 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
48 |
+
NUM_WORKERS: 32
|
49 |
+
VERSION: 2
|
annotator/entityseg/configs/cropformer_hornet_3x.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_BASE_: Base-Mask2Former.yaml
|
2 |
+
DATALOADER:
|
3 |
+
NUM_WORKERS: 32
|
4 |
+
DATASETS:
|
5 |
+
TRAIN: ("entityv2_entity_train_01","entityv2_entity_train_02","entityv2_entity_train_03",)
|
6 |
+
TEST: ("entityv2_entity_val_all",)
|
7 |
+
# TEST: ("entityv2_entity_val_all_lr",)
|
8 |
+
SOLVER:
|
9 |
+
# STEPS: (91575, 99414)
|
10 |
+
# MAX_ITER: 103125
|
11 |
+
IMS_PER_BATCH: 8
|
12 |
+
STEPS: (183150, 198828)
|
13 |
+
MAX_ITER: 206250
|
14 |
+
MODEL:
|
15 |
+
BACKBONE:
|
16 |
+
NAME: "D2HorNet"
|
17 |
+
PIXEL_MEAN: [123.675, 116.28, 103.53]
|
18 |
+
PIXEL_STD: [58.395, 57.120, 57.375]
|
19 |
+
SWIN:
|
20 |
+
EMBED_DIM: 192
|
21 |
+
DEPTHS: [2, 2, 18, 2]
|
22 |
+
NUM_HEADS: [6, 12, 24, 48]
|
23 |
+
WINDOW_SIZE: 7
|
24 |
+
APE: False
|
25 |
+
DROP_PATH_RATE: 0.3
|
26 |
+
PATCH_NORM: True
|
27 |
+
PRETRAIN_IMG_SIZE: 384
|
28 |
+
WEIGHTS: "hornet_l_pretrained.pth"
|
29 |
+
META_ARCHITECTURE: "CropFormer"
|
30 |
+
SEM_SEG_HEAD:
|
31 |
+
NAME: "MaskFormerHead"
|
32 |
+
IGNORE_VALUE: 255
|
33 |
+
NUM_CLASSES: 1
|
34 |
+
LOSS_WEIGHT: 1.0
|
35 |
+
CONVS_DIM: 256
|
36 |
+
MASK_DIM: 256
|
37 |
+
NORM: "GN"
|
38 |
+
# pixel decoder
|
39 |
+
PIXEL_DECODER_NAME: "MSDeformAttnPixelDecoder"
|
40 |
+
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
41 |
+
DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
|
42 |
+
COMMON_STRIDE: 4
|
43 |
+
TRANSFORMER_ENC_LAYERS: 6
|
44 |
+
MASK_FORMER:
|
45 |
+
TRANSFORMER_DECODER_NAME: "CropSharedMultiScaleMaskedTransformerDecoder"
|
46 |
+
TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
|
47 |
+
DEEP_SUPERVISION: True
|
48 |
+
NO_OBJECT_WEIGHT: 0.1
|
49 |
+
CLASS_WEIGHT: 2.0
|
50 |
+
MASK_WEIGHT: 5.0
|
51 |
+
DICE_WEIGHT: 5.0
|
52 |
+
HIDDEN_DIM: 256
|
53 |
+
NUM_OBJECT_QUERIES: 200
|
54 |
+
NHEADS: 8
|
55 |
+
DROPOUT: 0.0
|
56 |
+
DIM_FEEDFORWARD: 2048
|
57 |
+
ENC_LAYERS: 0
|
58 |
+
PRE_NORM: False
|
59 |
+
ENFORCE_INPUT_PROJ: False
|
60 |
+
SIZE_DIVISIBILITY: 32
|
61 |
+
DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
|
62 |
+
TRAIN_NUM_POINTS: 12544
|
63 |
+
OVERSAMPLE_RATIO: 3.0
|
64 |
+
IMPORTANCE_SAMPLE_RATIO: 0.75
|
65 |
+
TEST:
|
66 |
+
SEMANTIC_ON: False
|
67 |
+
INSTANCE_ON: True
|
68 |
+
PANOPTIC_ON: False
|
69 |
+
OVERLAP_THRESHOLD: 0.8
|
70 |
+
OBJECT_MASK_THRESHOLD: 0.8
|
annotator/entityseg/mask2former/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from . import data # register all new datasets
|
3 |
+
from . import modeling
|
4 |
+
|
5 |
+
# config
|
6 |
+
from .config import add_maskformer2_config
|
7 |
+
|
8 |
+
# models
|
9 |
+
from .maskformer_model import MaskFormer
|
10 |
+
from .cropformer_model import CropFormer
|
11 |
+
from .test_time_augmentation import SemanticSegmentorWithTTA
|
annotator/entityseg/mask2former/config.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
from detectron2.config import CfgNode as CN
|
4 |
+
|
5 |
+
|
6 |
+
def add_maskformer2_config(cfg):
|
7 |
+
"""
|
8 |
+
Add config for MASK_FORMER.
|
9 |
+
"""
|
10 |
+
# NOTE: configs from original maskformer
|
11 |
+
# data config
|
12 |
+
# select the dataset mapper
|
13 |
+
cfg.INPUT.DATASET_MAPPER_NAME = "mask_former_semantic"
|
14 |
+
# Color augmentation
|
15 |
+
cfg.INPUT.COLOR_AUG_SSD = False
|
16 |
+
# We retry random cropping until no single category in semantic segmentation GT occupies more
|
17 |
+
# than `SINGLE_CATEGORY_MAX_AREA` part of the crop.
|
18 |
+
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0
|
19 |
+
# Pad image and segmentation GT in dataset mapper.
|
20 |
+
cfg.INPUT.SIZE_DIVISIBILITY = -1
|
21 |
+
|
22 |
+
# solver config
|
23 |
+
# weight decay on embedding
|
24 |
+
cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0
|
25 |
+
# optimizer
|
26 |
+
cfg.SOLVER.OPTIMIZER = "ADAMW"
|
27 |
+
cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
|
28 |
+
|
29 |
+
# mask_former model config
|
30 |
+
cfg.MODEL.MASK_FORMER = CN()
|
31 |
+
|
32 |
+
# loss
|
33 |
+
cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION = True
|
34 |
+
cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT = 0.1
|
35 |
+
cfg.MODEL.MASK_FORMER.CLASS_WEIGHT = 1.0
|
36 |
+
cfg.MODEL.MASK_FORMER.DICE_WEIGHT = 1.0
|
37 |
+
cfg.MODEL.MASK_FORMER.MASK_WEIGHT = 20.0
|
38 |
+
|
39 |
+
# transformer config
|
40 |
+
cfg.MODEL.MASK_FORMER.NHEADS = 8
|
41 |
+
cfg.MODEL.MASK_FORMER.DROPOUT = 0.1
|
42 |
+
cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD = 2048
|
43 |
+
cfg.MODEL.MASK_FORMER.ENC_LAYERS = 0
|
44 |
+
cfg.MODEL.MASK_FORMER.DEC_LAYERS = 6
|
45 |
+
cfg.MODEL.MASK_FORMER.PRE_NORM = False
|
46 |
+
|
47 |
+
cfg.MODEL.MASK_FORMER.HIDDEN_DIM = 256
|
48 |
+
cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES = 100
|
49 |
+
|
50 |
+
cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE = "res5"
|
51 |
+
cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ = False
|
52 |
+
|
53 |
+
# mask_former inference config
|
54 |
+
cfg.MODEL.MASK_FORMER.TEST = CN()
|
55 |
+
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = True
|
56 |
+
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = False
|
57 |
+
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = False
|
58 |
+
cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD = 0.0
|
59 |
+
cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD = 0.0
|
60 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False
|
61 |
+
|
62 |
+
# Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet)
|
63 |
+
# you can use this config to override
|
64 |
+
cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY = 32
|
65 |
+
|
66 |
+
# pixel decoder config
|
67 |
+
cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256
|
68 |
+
# adding transformer in pixel decoder
|
69 |
+
cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0
|
70 |
+
# pixel decoder
|
71 |
+
cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder"
|
72 |
+
|
73 |
+
# swin transformer backbone
|
74 |
+
cfg.MODEL.SWIN = CN()
|
75 |
+
cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224
|
76 |
+
cfg.MODEL.SWIN.PATCH_SIZE = 4
|
77 |
+
cfg.MODEL.SWIN.EMBED_DIM = 96
|
78 |
+
cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2]
|
79 |
+
cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24]
|
80 |
+
cfg.MODEL.SWIN.WINDOW_SIZE = 7
|
81 |
+
cfg.MODEL.SWIN.MLP_RATIO = 4.0
|
82 |
+
cfg.MODEL.SWIN.QKV_BIAS = True
|
83 |
+
cfg.MODEL.SWIN.QK_SCALE = None
|
84 |
+
cfg.MODEL.SWIN.DROP_RATE = 0.0
|
85 |
+
cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0
|
86 |
+
cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3
|
87 |
+
cfg.MODEL.SWIN.APE = False
|
88 |
+
cfg.MODEL.SWIN.PATCH_NORM = True
|
89 |
+
cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
|
90 |
+
cfg.MODEL.SWIN.USE_CHECKPOINT = False
|
91 |
+
|
92 |
+
# NOTE: maskformer2 extra configs
|
93 |
+
# transformer module
|
94 |
+
cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME = "MultiScaleMaskedTransformerDecoder"
|
95 |
+
|
96 |
+
# LSJ aug
|
97 |
+
cfg.INPUT.IMAGE_SIZE = 1024
|
98 |
+
cfg.INPUT.MIN_SCALE = 0.1
|
99 |
+
cfg.INPUT.MAX_SCALE = 2.0
|
100 |
+
|
101 |
+
# MSDeformAttn encoder configs
|
102 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"]
|
103 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4
|
104 |
+
cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8
|
105 |
+
|
106 |
+
# point loss configs
|
107 |
+
# Number of points sampled during training for a mask point head.
|
108 |
+
cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS = 112 * 112
|
109 |
+
# Oversampling parameter for PointRend point sampling during training. Parameter `k` in the
|
110 |
+
# original paper.
|
111 |
+
cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO = 3.0
|
112 |
+
# Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in
|
113 |
+
# the original paper.
|
114 |
+
cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75
|
115 |
+
|
116 |
+
## For Entity
|
117 |
+
cfg.ENTITY = CN()
|
118 |
+
cfg.ENTITY.ENABLE = False
|
119 |
+
cfg.ENTITY.CROP_AREA_RATIO = 0.7
|
120 |
+
cfg.ENTITY.CROP_STRIDE_RATIO = 0.6
|
121 |
+
cfg.ENTITY.CROP_SAMPLE_NUM_TRAIN = 1
|
122 |
+
cfg.ENTITY.CROP_SAMPLE_NUM_TEST = 4
|
123 |
+
|
124 |
+
## fuse frame embeddings to batch embedding
|
125 |
+
cfg.ENTITY.FUSE_NUM_LAYERS = 1
|
126 |
+
cfg.ENTITY.FUSE_ENC_HIDDIEN_DIM = 256
|
127 |
+
cfg.ENTITY.FUSE_ENC_NHEADS = 8
|
128 |
+
cfg.ENTITY.FUSE_ENC_PRE_NORM = False
|
129 |
+
cfg.ENTITY.FUSE_ENC_DIM_FEEDFORWARD = 2048
|
130 |
+
cfg.ENTITY.FUSE_ENC_LAST_LAYERS = 1
|
131 |
+
cfg.ENTITY.FUSE_DEC_NUM_LAYERS = 3
|
132 |
+
|
133 |
+
## Hornet backbone
|
134 |
+
cfg.MODEL.HORNET = CN()
|
135 |
+
cfg.MODEL.HORNET.DEPTHS = [2, 3, 18, 2]
|
136 |
+
cfg.MODEL.HORNET.BASE_DIM = 192
|
137 |
+
cfg.MODEL.HORNET.GCONV = ['partial(gnconv, order=2, s=1/3)', 'partial(gnconv, order=3, s=1/3)', 'partial(gnconv, order=4, s=1/3, h=24, w=13, gflayer=GlobalLocalFilter)', 'partial(gnconv, order=5, s=1/3, h=12, w=7, gflayer=GlobalLocalFilter)']
|
138 |
+
cfg.MODEL.HORNET.DROP_PATH_RATE=0.6
|
139 |
+
cfg.MODEL.HORNET.OUT_FEATURES = ["res2", "res3", "res4", "res5"]
|
annotator/entityseg/mask2former/cropformer_model.py
ADDED
@@ -0,0 +1,678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
import pdb
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
import os
|
11 |
+
|
12 |
+
from detectron2.config import configurable
|
13 |
+
from detectron2.data import MetadataCatalog
|
14 |
+
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
|
15 |
+
from detectron2.modeling.backbone import Backbone
|
16 |
+
from detectron2.modeling.postprocessing import sem_seg_postprocess
|
17 |
+
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
|
18 |
+
from detectron2.utils.memory import retry_if_cuda_oom
|
19 |
+
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
|
20 |
+
|
21 |
+
from .modeling.criterion import SetCriterion
|
22 |
+
from .modeling.matcher import HungarianMatcher
|
23 |
+
from .modeling.criterion_view import ViewSetCriterion
|
24 |
+
from .modeling.matcher_view import ViewHungarianMatcher
|
25 |
+
import pdb
|
26 |
+
import copy
|
27 |
+
|
28 |
+
@META_ARCH_REGISTRY.register()
|
29 |
+
class CropFormer(nn.Module):
|
30 |
+
"""
|
31 |
+
Main class for mask classification semantic segmentation architectures.
|
32 |
+
"""
|
33 |
+
@configurable
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
*,
|
37 |
+
cfg,
|
38 |
+
backbone: Backbone,
|
39 |
+
sem_seg_head: nn.Module,
|
40 |
+
criterion_2d: nn.Module,
|
41 |
+
criterion_3d: nn.Module,
|
42 |
+
num_queries: int,
|
43 |
+
object_mask_threshold: float,
|
44 |
+
overlap_threshold: float,
|
45 |
+
metadata,
|
46 |
+
size_divisibility: int,
|
47 |
+
sem_seg_postprocess_before_inference: bool,
|
48 |
+
pixel_mean: Tuple[float],
|
49 |
+
pixel_std: Tuple[float],
|
50 |
+
# inference
|
51 |
+
semantic_on: bool,
|
52 |
+
panoptic_on: bool,
|
53 |
+
instance_on: bool,
|
54 |
+
test_topk_per_image: int,
|
55 |
+
):
|
56 |
+
"""
|
57 |
+
Args:
|
58 |
+
backbone: a backbone module, must follow detectron2's backbone interface
|
59 |
+
sem_seg_head: a module that predicts semantic segmentation from backbone features
|
60 |
+
criterion: a module that defines the loss
|
61 |
+
num_queries: int, number of queries
|
62 |
+
object_mask_threshold: float, threshold to filter query based on classification score
|
63 |
+
for panoptic segmentation inference
|
64 |
+
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
|
65 |
+
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
|
66 |
+
segmentation inference
|
67 |
+
size_divisibility: Some backbones require the input height and width to be divisible by a
|
68 |
+
specific integer. We can use this to override such requirement.
|
69 |
+
sem_seg_postprocess_before_inference: whether to resize the prediction back
|
70 |
+
to original input size before semantic segmentation inference or after.
|
71 |
+
For high-resolution dataset like Mapillary, resizing predictions before
|
72 |
+
inference will cause OOM error.
|
73 |
+
pixel_mean, pixel_std: list or tuple with #channels element, representing
|
74 |
+
the per-channel mean and std to be used to normalize the input image
|
75 |
+
semantic_on: bool, whether to output semantic segmentation prediction
|
76 |
+
instance_on: bool, whether to output instance segmentation prediction
|
77 |
+
panoptic_on: bool, whether to output panoptic segmentation prediction
|
78 |
+
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
|
79 |
+
"""
|
80 |
+
super().__init__()
|
81 |
+
self.cfg = cfg
|
82 |
+
self.backbone = backbone
|
83 |
+
self.sem_seg_head = sem_seg_head
|
84 |
+
self.criterion_2d = criterion_2d
|
85 |
+
self.criterion_3d = criterion_3d
|
86 |
+
## colors
|
87 |
+
self.colors = [info["color"] for info in COCO_CATEGORIES]
|
88 |
+
|
89 |
+
self.num_queries = num_queries
|
90 |
+
self.overlap_threshold = overlap_threshold
|
91 |
+
self.object_mask_threshold = object_mask_threshold
|
92 |
+
self.metadata = metadata
|
93 |
+
if size_divisibility < 0:
|
94 |
+
# use backbone size_divisibility if not set
|
95 |
+
size_divisibility = self.backbone.size_divisibility
|
96 |
+
self.size_divisibility = size_divisibility
|
97 |
+
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
|
98 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
99 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
100 |
+
|
101 |
+
## colors
|
102 |
+
self.colors = [info["color"] for info in COCO_CATEGORIES]
|
103 |
+
|
104 |
+
# additional args
|
105 |
+
self.semantic_on = semantic_on
|
106 |
+
self.instance_on = instance_on
|
107 |
+
self.panoptic_on = panoptic_on
|
108 |
+
self.test_topk_per_image = test_topk_per_image
|
109 |
+
|
110 |
+
if not self.semantic_on:
|
111 |
+
assert self.sem_seg_postprocess_before_inference
|
112 |
+
|
113 |
+
@classmethod
|
114 |
+
def from_config(cls, cfg):
|
115 |
+
backbone = build_backbone(cfg)
|
116 |
+
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
|
117 |
+
|
118 |
+
# Loss parameters:
|
119 |
+
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
120 |
+
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
|
121 |
+
|
122 |
+
# loss weights
|
123 |
+
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
|
124 |
+
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
|
125 |
+
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
|
126 |
+
|
127 |
+
# building criterion
|
128 |
+
matcher_2d = HungarianMatcher(
|
129 |
+
cost_class=class_weight,
|
130 |
+
cost_mask=mask_weight,
|
131 |
+
cost_dice=dice_weight,
|
132 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
133 |
+
)
|
134 |
+
|
135 |
+
matcher_3d = ViewHungarianMatcher(
|
136 |
+
cost_class=class_weight,
|
137 |
+
cost_mask=mask_weight,
|
138 |
+
cost_dice=dice_weight,
|
139 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
140 |
+
)
|
141 |
+
|
142 |
+
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
|
143 |
+
|
144 |
+
if deep_supervision:
|
145 |
+
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
146 |
+
aux_weight_dict = {}
|
147 |
+
for i in range(dec_layers - 1):
|
148 |
+
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
149 |
+
weight_dict.update(aux_weight_dict)
|
150 |
+
|
151 |
+
losses = ["labels", "masks"]
|
152 |
+
|
153 |
+
criterion_2d = SetCriterion(
|
154 |
+
sem_seg_head.num_classes,
|
155 |
+
matcher=matcher_2d,
|
156 |
+
weight_dict=weight_dict,
|
157 |
+
eos_coef=no_object_weight,
|
158 |
+
losses=losses,
|
159 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
160 |
+
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
|
161 |
+
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
|
162 |
+
)
|
163 |
+
|
164 |
+
criterion_3d = ViewSetCriterion(
|
165 |
+
sem_seg_head.num_classes,
|
166 |
+
matcher=matcher_3d,
|
167 |
+
weight_dict=weight_dict,
|
168 |
+
eos_coef=no_object_weight,
|
169 |
+
losses=losses,
|
170 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
171 |
+
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
|
172 |
+
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
|
173 |
+
)
|
174 |
+
|
175 |
+
return {
|
176 |
+
"cfg": cfg,
|
177 |
+
"backbone": backbone,
|
178 |
+
"sem_seg_head": sem_seg_head,
|
179 |
+
"criterion_2d": criterion_2d,
|
180 |
+
"criterion_3d": criterion_3d,
|
181 |
+
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
|
182 |
+
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
|
183 |
+
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
|
184 |
+
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
|
185 |
+
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
|
186 |
+
"sem_seg_postprocess_before_inference": (
|
187 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
|
188 |
+
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
|
189 |
+
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
|
190 |
+
),
|
191 |
+
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
|
192 |
+
"pixel_std": cfg.MODEL.PIXEL_STD,
|
193 |
+
# inference
|
194 |
+
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
|
195 |
+
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
|
196 |
+
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
|
197 |
+
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
|
198 |
+
}
|
199 |
+
|
200 |
+
@property
|
201 |
+
def device(self):
|
202 |
+
return self.pixel_mean.device
|
203 |
+
|
204 |
+
def forward(self, batched_inputs):
|
205 |
+
"""
|
206 |
+
Args:
|
207 |
+
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
|
208 |
+
Each item in the list contains the inputs for one image.
|
209 |
+
For now, each item in the list is a dict that contains:
|
210 |
+
* "image": Tensor, image in (C, H, W) format.
|
211 |
+
* "instances": per-region ground truth
|
212 |
+
* Other information that's included in the original dicts, such as:
|
213 |
+
"height", "width" (int): the output resolution of the model (may be different
|
214 |
+
from input resolution), used in inference.
|
215 |
+
Returns:
|
216 |
+
list[dict]:
|
217 |
+
each dict has the results for one image. The dict contains the following keys:
|
218 |
+
|
219 |
+
* "sem_seg":
|
220 |
+
A Tensor that represents the
|
221 |
+
per-pixel segmentation prediced by the head.
|
222 |
+
The prediction has shape KxHxW that represents the logits of
|
223 |
+
each class for each pixel.
|
224 |
+
* "panoptic_seg":
|
225 |
+
A tuple that represent panoptic output
|
226 |
+
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
|
227 |
+
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
|
228 |
+
Each dict contains keys "id", "category_id", "isthing".
|
229 |
+
"""
|
230 |
+
## make new images
|
231 |
+
batched_inputs_new = []
|
232 |
+
for batched_input in batched_inputs:
|
233 |
+
ori_infos = {"height": batched_input["height"],
|
234 |
+
"width": batched_input["width"],
|
235 |
+
"image": batched_input["image"],
|
236 |
+
# "file_name": batched_input["file_name"],
|
237 |
+
}
|
238 |
+
if "instances" in batched_input.keys():
|
239 |
+
ori_instances = batched_input["instances"]
|
240 |
+
ori_instances.original_indices = torch.arange(0, len(ori_instances)).long()
|
241 |
+
ori_infos["instances"] = ori_instances
|
242 |
+
batched_inputs_new.append(ori_infos)
|
243 |
+
## cropped patches
|
244 |
+
# pdb.set_trace()
|
245 |
+
crop_region = batched_input["crop_region"]
|
246 |
+
crop_images = batched_input["image_crop"]
|
247 |
+
crop_o_width = int(crop_region[0][2]-crop_region[0][0])
|
248 |
+
crop_o_height = int(crop_region[0][3]-crop_region[0][1])
|
249 |
+
|
250 |
+
if "instances_crop" in batched_input.keys():
|
251 |
+
crop_instances = batched_input["instances_crop"]
|
252 |
+
else:
|
253 |
+
crop_instances = None
|
254 |
+
|
255 |
+
for crop_index, crop_image in enumerate(crop_images):
|
256 |
+
crop_infos = {"height": crop_o_height, "width": crop_o_width, "image": crop_image}
|
257 |
+
if not crop_instances == None:
|
258 |
+
crop_instance = crop_instances[crop_index]
|
259 |
+
crop_instance.original_indices = torch.arange(0, len(crop_instance)).long()
|
260 |
+
crop_infos["instances"] = crop_instance
|
261 |
+
batched_inputs_new.append(crop_infos)
|
262 |
+
|
263 |
+
images = [x["image"].to(self.device) for x in batched_inputs_new]
|
264 |
+
## +1 means
|
265 |
+
num_views = self.cfg.ENTITY.CROP_SAMPLE_NUM_TRAIN+1 if self.training else self.cfg.ENTITY.CROP_SAMPLE_NUM_TEST+1
|
266 |
+
for i in range(len(images)):
|
267 |
+
if i%num_views==0:
|
268 |
+
continue
|
269 |
+
_, c_h, c_w = images[i].shape
|
270 |
+
if "instances" in batched_inputs_new[i].keys():
|
271 |
+
batched_inputs_new[i]["instances"]._image_size = (c_h, c_w)
|
272 |
+
|
273 |
+
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
|
274 |
+
images = ImageList.from_tensors(images, self.size_divisibility)
|
275 |
+
|
276 |
+
features = self.backbone(images.tensor)
|
277 |
+
outputs_2d, outputs_3d = self.sem_seg_head(features)
|
278 |
+
|
279 |
+
if self.training:
|
280 |
+
if self.cfg.ENTITY.ENABLE:
|
281 |
+
for i in range(len(batched_inputs_new)):
|
282 |
+
batched_inputs_new[i]["instances"].gt_classes[:] = 0
|
283 |
+
|
284 |
+
if "instances" in batched_inputs[0]:
|
285 |
+
gt_instances = [x["instances"].to(self.device) for x in batched_inputs_new]
|
286 |
+
targets_2d = self.prepare_targets_2d(copy.deepcopy(gt_instances), copy.deepcopy(images))
|
287 |
+
targets_3d = self.prepare_targets_3d(copy.deepcopy(gt_instances), copy.deepcopy(images), num_views)
|
288 |
+
else:
|
289 |
+
targets = None
|
290 |
+
|
291 |
+
# bipartite matching-based loss
|
292 |
+
losses = {}
|
293 |
+
losses_2d = self.criterion_2d(outputs_2d, targets_2d)
|
294 |
+
losses_3d = self.criterion_3d(outputs_3d, targets_3d)
|
295 |
+
|
296 |
+
for k in list(losses_2d.keys()):
|
297 |
+
if k in self.criterion_2d.weight_dict:
|
298 |
+
losses[k+"_2d"] = losses_2d[k] * self.criterion_2d.weight_dict[k] * 0.5
|
299 |
+
else:
|
300 |
+
# remove this loss if not specified in `weight_dict`
|
301 |
+
losses_2d.pop(k)
|
302 |
+
|
303 |
+
for k in list(losses_3d.keys()):
|
304 |
+
if k in self.criterion_3d.weight_dict:
|
305 |
+
losses[k+"_3d"] = losses_3d[k] * self.criterion_3d.weight_dict[k]
|
306 |
+
else:
|
307 |
+
# remove this loss if not specified in `weight_dict`
|
308 |
+
losses_3d.pop(k)
|
309 |
+
return losses
|
310 |
+
else:
|
311 |
+
mask_cls_results_3d = outputs_3d["pred_logits"][0] ## 100,2
|
312 |
+
mask_pred_results_3d = outputs_3d["pred_masks"][0] ## 100,5,200, 304
|
313 |
+
|
314 |
+
mask_cls_results_2d = outputs_2d["pred_logits"]
|
315 |
+
mask_pred_results_2d = outputs_2d["pred_masks"]
|
316 |
+
# upsample masks
|
317 |
+
|
318 |
+
mask_pred_results_3d = retry_if_cuda_oom(F.interpolate)(
|
319 |
+
mask_pred_results_3d,
|
320 |
+
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
|
321 |
+
mode="bilinear",
|
322 |
+
align_corners=False,
|
323 |
+
)
|
324 |
+
|
325 |
+
mask_pred_results_2d = F.interpolate(
|
326 |
+
mask_pred_results_2d,
|
327 |
+
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
|
328 |
+
mode="bilinear",
|
329 |
+
align_corners=False,
|
330 |
+
)
|
331 |
+
|
332 |
+
del outputs_2d, outputs_3d
|
333 |
+
|
334 |
+
crop_regions = batched_input["crop_region"][:num_views-1]
|
335 |
+
processed_results = retry_if_cuda_oom(self.inference_whole_views)(
|
336 |
+
mask_cls_results_3d,
|
337 |
+
mask_pred_results_3d,
|
338 |
+
mask_cls_results_2d,
|
339 |
+
mask_pred_results_2d,
|
340 |
+
batched_inputs_new,
|
341 |
+
images.image_sizes,
|
342 |
+
crop_regions)
|
343 |
+
|
344 |
+
# processed_results = retry_if_cuda_oom(self.instance_inference_nonoverlap)(
|
345 |
+
# mask_cls_results_2d[0],
|
346 |
+
# mask_pred_results_2d[0],
|
347 |
+
# batched_inputs_new[0],
|
348 |
+
# images.image_sizes[0])
|
349 |
+
|
350 |
+
return [{"instances": processed_results}]
|
351 |
+
|
352 |
+
def prepare_targets_2d(self, targets, images):
|
353 |
+
h_pad, w_pad = images.tensor.shape[-2:]
|
354 |
+
new_targets = []
|
355 |
+
for targets_per_image in targets:
|
356 |
+
gt_masks = targets_per_image.gt_masks.tensor
|
357 |
+
gt_valid = targets_per_image.gt_boxes_valid
|
358 |
+
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
|
359 |
+
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
|
360 |
+
valid_index = torch.nonzero(gt_valid).flatten()
|
361 |
+
new_targets.append(
|
362 |
+
{
|
363 |
+
"labels": targets_per_image.gt_classes[valid_index],
|
364 |
+
"masks": padded_masks[valid_index],
|
365 |
+
}
|
366 |
+
)
|
367 |
+
return new_targets
|
368 |
+
|
369 |
+
def prepare_targets_3d(self, targets_ori, images, num_views):
|
370 |
+
T = num_views
|
371 |
+
B = int(len(targets_ori) / T)
|
372 |
+
h_pad, w_pad = images.tensor.shape[-2:]
|
373 |
+
|
374 |
+
## reshape to new targets
|
375 |
+
new_targets = []
|
376 |
+
for count, target in enumerate(targets_ori):
|
377 |
+
b_index, t_index = int(count // T), int(count % T)
|
378 |
+
if t_index == 0:
|
379 |
+
new_targets.append([target])
|
380 |
+
else:
|
381 |
+
new_targets[b_index].append(target)
|
382 |
+
|
383 |
+
gt_instances = []
|
384 |
+
for count, targets in enumerate(new_targets):
|
385 |
+
_num_instance = len(targets[0])
|
386 |
+
mask_shape = [_num_instance, T, h_pad, w_pad]
|
387 |
+
gt_masks_per_view = torch.zeros(mask_shape, dtype=torch.bool, device=self.device)
|
388 |
+
|
389 |
+
for v_i, targets_per_view in enumerate(targets):
|
390 |
+
assert torch.all(targets[0].original_indices == targets_per_view.original_indices)
|
391 |
+
|
392 |
+
gt_ids_per_view = []
|
393 |
+
gt_ids_per_valid = []
|
394 |
+
gt_ids_categories = []
|
395 |
+
## view first, then entities
|
396 |
+
for v_i, targets_per_view in enumerate(targets):
|
397 |
+
targets_per_view = targets_per_view.to(self.device)
|
398 |
+
h, w = targets_per_view.image_size
|
399 |
+
for i_i, (instance_mask, instance_valid) in enumerate(zip(targets_per_view.gt_masks.tensor, targets_per_view.gt_boxes_valid)):
|
400 |
+
if instance_valid == 1:
|
401 |
+
gt_masks_per_view[i_i, v_i, :h, :w] = instance_mask
|
402 |
+
gt_ids_per_valid.append(targets_per_view.gt_boxes_valid[None,:])
|
403 |
+
gt_ids_per_view.append(targets_per_view.original_indices[None,:])
|
404 |
+
gt_ids_categories.append(targets_per_view.gt_classes[None, :])
|
405 |
+
## (num_instances, num_views)
|
406 |
+
gt_ids_per_valid = torch.cat(gt_ids_per_valid, dim=0).permute((1,0))
|
407 |
+
gt_ids_per_view = torch.cat(gt_ids_per_view, dim=0).permute((1,0))
|
408 |
+
gt_ids_categories = torch.cat(gt_ids_categories, dim=0).permute((1,0))
|
409 |
+
|
410 |
+
gt_ids_per_view[gt_ids_per_valid == 0] = -1
|
411 |
+
valid_idx = (gt_ids_per_view != 1).any(dim=-1)
|
412 |
+
## categoreis
|
413 |
+
gt_classes_per_group = gt_ids_categories[:,0] ## N
|
414 |
+
gt_ids_per_group = gt_ids_per_view ## N, num_views
|
415 |
+
gt_masks_per_group = gt_masks_per_view.float() ## N, num_views, H, W
|
416 |
+
|
417 |
+
##
|
418 |
+
gt_instances.append({"labels": gt_classes_per_group,
|
419 |
+
"ids": gt_ids_per_group,
|
420 |
+
"masks": gt_masks_per_group})
|
421 |
+
|
422 |
+
return gt_instances
|
423 |
+
|
424 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
425 |
+
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
|
426 |
+
mask_pred = mask_pred.sigmoid()
|
427 |
+
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
|
428 |
+
return semseg
|
429 |
+
|
430 |
+
def panoptic_inference(self, mask_cls, mask_pred):
|
431 |
+
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
|
432 |
+
mask_pred = mask_pred.sigmoid()
|
433 |
+
|
434 |
+
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
|
435 |
+
cur_scores = scores[keep]
|
436 |
+
cur_classes = labels[keep]
|
437 |
+
cur_masks = mask_pred[keep]
|
438 |
+
cur_mask_cls = mask_cls[keep]
|
439 |
+
cur_mask_cls = cur_mask_cls[:, :-1]
|
440 |
+
|
441 |
+
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
|
442 |
+
|
443 |
+
h, w = cur_masks.shape[-2:]
|
444 |
+
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
|
445 |
+
segments_info = []
|
446 |
+
|
447 |
+
current_segment_id = 0
|
448 |
+
|
449 |
+
if cur_masks.shape[0] == 0:
|
450 |
+
# We didn't detect any mask :(
|
451 |
+
return panoptic_seg, segments_info
|
452 |
+
else:
|
453 |
+
# take argmax
|
454 |
+
cur_mask_ids = cur_prob_masks.argmax(0)
|
455 |
+
stuff_memory_list = {}
|
456 |
+
for k in range(cur_classes.shape[0]):
|
457 |
+
pred_class = cur_classes[k].item()
|
458 |
+
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
459 |
+
mask_area = (cur_mask_ids == k).sum().item()
|
460 |
+
original_area = (cur_masks[k] >= 0.5).sum().item()
|
461 |
+
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
|
462 |
+
|
463 |
+
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
|
464 |
+
if mask_area / original_area < self.overlap_threshold:
|
465 |
+
continue
|
466 |
+
|
467 |
+
# merge stuff regions
|
468 |
+
if not isthing:
|
469 |
+
if int(pred_class) in stuff_memory_list.keys():
|
470 |
+
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
|
471 |
+
continue
|
472 |
+
else:
|
473 |
+
stuff_memory_list[int(pred_class)] = current_segment_id + 1
|
474 |
+
|
475 |
+
current_segment_id += 1
|
476 |
+
panoptic_seg[mask] = current_segment_id
|
477 |
+
|
478 |
+
segments_info.append(
|
479 |
+
{
|
480 |
+
"id": current_segment_id,
|
481 |
+
"isthing": bool(isthing),
|
482 |
+
"category_id": int(pred_class),
|
483 |
+
}
|
484 |
+
)
|
485 |
+
return panoptic_seg, segments_info
|
486 |
+
|
487 |
+
def instance_inference_nonoverlap(self, mask_cls, mask_pred):
|
488 |
+
# mask_pred is already processed to have the same shape as original input
|
489 |
+
image_size = mask_pred.shape[-2:]
|
490 |
+
|
491 |
+
# [Q, K]
|
492 |
+
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
|
493 |
+
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
|
494 |
+
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
|
495 |
+
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
|
496 |
+
labels_per_image = labels[topk_indices]
|
497 |
+
|
498 |
+
topk_indices = topk_indices // self.sem_seg_head.num_classes
|
499 |
+
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
|
500 |
+
mask_pred = mask_pred[topk_indices]
|
501 |
+
|
502 |
+
###### ranks
|
503 |
+
pred_masks = (mask_pred>0).float()
|
504 |
+
pred_masks_logits = mask_pred.sigmoid()
|
505 |
+
pred_scores = scores_per_image
|
506 |
+
|
507 |
+
_, m_H, m_W = pred_masks.shape
|
508 |
+
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device)
|
509 |
+
sorted_scores, ranks = torch.sort(pred_scores)
|
510 |
+
ranks = ranks + 1
|
511 |
+
for index in ranks:
|
512 |
+
mask_id[(pred_masks[index-1]==1)] = int(index)
|
513 |
+
# re-generate mask
|
514 |
+
new_scores = []
|
515 |
+
new_masks = []
|
516 |
+
new_masks_logits = []
|
517 |
+
entity_nums = len(ranks)
|
518 |
+
for ii in range(entity_nums):
|
519 |
+
index = int(ranks[entity_nums-ii-1])
|
520 |
+
score = sorted_scores[entity_nums-ii-1]
|
521 |
+
new_scores.append(score)
|
522 |
+
new_masks.append((mask_id==index).float())
|
523 |
+
new_masks_logits.append(pred_masks_logits[index-1])
|
524 |
+
|
525 |
+
new_scores = torch.stack(new_scores)
|
526 |
+
new_masks = torch.stack(new_masks)
|
527 |
+
new_masks_logits = torch.stack(new_masks_logits)
|
528 |
+
|
529 |
+
result = Instances(image_size)
|
530 |
+
# mask (before sigmoid)
|
531 |
+
result.pred_masks = new_masks
|
532 |
+
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4))
|
533 |
+
# Uncomment the following to get boxes from masks (this is slow)
|
534 |
+
|
535 |
+
# calculate average mask prob
|
536 |
+
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
|
537 |
+
result.scores = new_scores * mask_scores_per_image
|
538 |
+
result.pred_classes = labels_per_image
|
539 |
+
return result
|
540 |
+
|
541 |
+
def instance_inference(self, mask_cls, mask_pred):
|
542 |
+
# mask_pred is already processed to have the same shape as original input
|
543 |
+
image_size = mask_pred.shape[-2:]
|
544 |
+
|
545 |
+
# [Q, K]
|
546 |
+
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
|
547 |
+
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
|
548 |
+
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
|
549 |
+
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
|
550 |
+
labels_per_image = labels[topk_indices]
|
551 |
+
|
552 |
+
topk_indices = topk_indices // self.sem_seg_head.num_classes
|
553 |
+
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
|
554 |
+
mask_pred = mask_pred[topk_indices]
|
555 |
+
|
556 |
+
# if this is panoptic segmentation, we only keep the "thing" classes
|
557 |
+
if self.panoptic_on:
|
558 |
+
keep = torch.zeros_like(scores_per_image).bool()
|
559 |
+
for i, lab in enumerate(labels_per_image):
|
560 |
+
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
561 |
+
|
562 |
+
scores_per_image = scores_per_image[keep]
|
563 |
+
labels_per_image = labels_per_image[keep]
|
564 |
+
mask_pred = mask_pred[keep]
|
565 |
+
|
566 |
+
result = Instances(image_size)
|
567 |
+
# mask (before sigmoid)
|
568 |
+
result.pred_masks = (mask_pred > 0).float()
|
569 |
+
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
|
570 |
+
# Uncomment the following to get boxes from masks (this is slow)
|
571 |
+
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
|
572 |
+
|
573 |
+
# calculate average mask prob
|
574 |
+
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
|
575 |
+
# pdb.set_trace()
|
576 |
+
result.scores = scores_per_image * mask_scores_per_image
|
577 |
+
result.pred_classes = labels_per_image
|
578 |
+
return result
|
579 |
+
|
580 |
+
def inference_whole_views(self, pred_cls, pred_masks, pred_cls_2d, pred_masks_2d, batched_inputs, image_sizes, crop_regions):
|
581 |
+
## pred_masks: [100, 5, 800, 1216]
|
582 |
+
## pred_masks_2d: [5, 100, 800, 1216]
|
583 |
+
scores = F.softmax(pred_cls, dim=-1)[:,:-1] # 100,1
|
584 |
+
scores_2d = F.softmax(pred_cls_2d, dim=-1)[:, :, :-1] # 5, 100, 1
|
585 |
+
|
586 |
+
# scores = (scores+scores_2d[0])/2
|
587 |
+
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
|
588 |
+
### keep all the indices
|
589 |
+
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
|
590 |
+
labels_per_image = labels[topk_indices]
|
591 |
+
# topk_indices = topk_indices // self.sem_seg_head.num_classes
|
592 |
+
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode="trunc")
|
593 |
+
pred_masks = pred_masks[topk_indices]
|
594 |
+
pred_masks = pred_masks.permute((1,0,2,3))
|
595 |
+
|
596 |
+
new_pred_masks = []
|
597 |
+
for view_index, (pred_masks_per_view, batched_input_per_view, image_size_per_view) in enumerate(zip(pred_masks, batched_inputs, image_sizes)):
|
598 |
+
O_H = batched_input_per_view["height"]
|
599 |
+
O_W = batched_input_per_view["width"]
|
600 |
+
|
601 |
+
SO_H, SO_W = image_size_per_view
|
602 |
+
|
603 |
+
pred_masks_per_view = pred_masks_per_view[..., : SO_H, :SO_W]
|
604 |
+
pred_masks_per_view = F.interpolate(pred_masks_per_view[None], size=(O_H, O_W), mode="bilinear", align_corners=False)
|
605 |
+
|
606 |
+
new_pred_masks.append(pred_masks_per_view[0].sigmoid())
|
607 |
+
|
608 |
+
## fuse the masks
|
609 |
+
full_image_masks = new_pred_masks[0]
|
610 |
+
|
611 |
+
## fuse crop image
|
612 |
+
fused_image_masks = torch.zeros_like(full_image_masks).float()
|
613 |
+
fused_image_masks_valid = torch.zeros_like(full_image_masks).float() + 1e-16
|
614 |
+
for crop_region_per_view, pred_masks_per_view in zip(crop_regions, new_pred_masks[1:]):
|
615 |
+
x0, y0, x1, y1 = crop_region_per_view
|
616 |
+
fused_image_masks[..., y0:y1, x0:x1] += pred_masks_per_view
|
617 |
+
fused_image_masks_valid[..., y0:y1, x0:x1] += 1
|
618 |
+
|
619 |
+
# add original masks
|
620 |
+
fused_image_masks += full_image_masks
|
621 |
+
fused_image_masks_valid += 1
|
622 |
+
|
623 |
+
## average
|
624 |
+
fuse_image_masks = fused_image_masks / fused_image_masks_valid
|
625 |
+
|
626 |
+
###### change to the single image, begin to non_overlap_supression
|
627 |
+
## ranks
|
628 |
+
pred_masks_logits = fuse_image_masks
|
629 |
+
pred_masks = (fuse_image_masks>0.5).float()
|
630 |
+
pred_scores = scores_per_image
|
631 |
+
|
632 |
+
_, m_H, m_W = pred_masks.shape
|
633 |
+
## for visualization
|
634 |
+
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device)
|
635 |
+
|
636 |
+
# mask_id_colors = np.zeros((m_H, m_W, 3), dtype=np.uint8)
|
637 |
+
# pred_masks_np = pred_masks.cpu().numpy()
|
638 |
+
|
639 |
+
sorted_scores, ranks = torch.sort(pred_scores)
|
640 |
+
ranks = ranks + 1
|
641 |
+
for index in ranks:
|
642 |
+
mask_id[(pred_masks[index-1]==1)] = int(index)
|
643 |
+
# mask_id_colors[(pred_masks_np[index-1]==1)] = self.colors[index]
|
644 |
+
# base_path = "/group/20018/gavinqi/vis_entityv2_release_debug"
|
645 |
+
# pdb.set_trace()
|
646 |
+
# file_name = batched_inputs[0]["file_name"]
|
647 |
+
# split_index, img_name = file_name.split("/")[-2:]
|
648 |
+
# save_name = img_name.split(".")[0]+".png"
|
649 |
+
# if not os.path.exists(os.path.join(base_path, save_name)):
|
650 |
+
# cv2.imwrite(os.path.join(base_path, save_name), mask_id_colors)
|
651 |
+
# re-generate mask
|
652 |
+
new_scores = []
|
653 |
+
new_masks = []
|
654 |
+
new_masks_logits = []
|
655 |
+
entity_nums = len(ranks)
|
656 |
+
for ii in range(entity_nums):
|
657 |
+
index = int(ranks[entity_nums-ii-1])
|
658 |
+
score = sorted_scores[entity_nums-ii-1]
|
659 |
+
new_scores.append(score)
|
660 |
+
new_masks.append((mask_id==index).float())
|
661 |
+
new_masks_logits.append(pred_masks_logits[index-1])
|
662 |
+
|
663 |
+
new_scores = torch.stack(new_scores)
|
664 |
+
new_masks = torch.stack(new_masks)
|
665 |
+
new_masks_logits = torch.stack(new_masks_logits)
|
666 |
+
# make result
|
667 |
+
image_size = (batched_inputs[0]["height"], batched_inputs[0]["width"])
|
668 |
+
result = Instances(image_size)
|
669 |
+
# mask (before sigmoid)
|
670 |
+
result.pred_masks = new_masks
|
671 |
+
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4))
|
672 |
+
# Uncomment the following to get boxes from masks (this is slow)
|
673 |
+
|
674 |
+
# calculate average mask prob
|
675 |
+
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
|
676 |
+
result.scores = new_scores * mask_scores_per_image
|
677 |
+
result.pred_classes = labels_per_image
|
678 |
+
return result
|
annotator/entityseg/mask2former/data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
annotator/entityseg/mask2former/data/dataset_mappers/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
annotator/entityseg/mask2former/data/dataset_mappers/crop_augmentations.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
"""
|
4 |
+
Implement many useful :class:`Augmentation`.
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
import sys
|
8 |
+
from typing import Tuple
|
9 |
+
from PIL import Image
|
10 |
+
import random
|
11 |
+
|
12 |
+
from fvcore.transforms.transform import NoOpTransform, Transform
|
13 |
+
|
14 |
+
from detectron2.data.transforms.augmentation import Augmentation
|
15 |
+
import pdb
|
16 |
+
import math
|
17 |
+
|
18 |
+
import logging
|
19 |
+
import numpy as np
|
20 |
+
import pycocotools.mask as mask_util
|
21 |
+
import torch
|
22 |
+
from PIL import Image
|
23 |
+
from collections import defaultdict
|
24 |
+
import copy
|
25 |
+
from detectron2.data import transforms as T
|
26 |
+
from detectron2.structures import (
|
27 |
+
BitMasks,
|
28 |
+
Boxes,
|
29 |
+
BoxMode,
|
30 |
+
Instances,
|
31 |
+
Keypoints,
|
32 |
+
PolygonMasks,
|
33 |
+
RotatedBoxes,
|
34 |
+
polygons_to_bitmask,
|
35 |
+
)
|
36 |
+
from detectron2.utils.file_io import PathManager
|
37 |
+
|
38 |
+
__all__ = [
|
39 |
+
"BatchResizeShortestEdge",
|
40 |
+
"EntityCrop",
|
41 |
+
]
|
42 |
+
|
43 |
+
class BatchResizeTransform(Transform):
|
44 |
+
"""
|
45 |
+
Resize the image to a target size.
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, h, w, new_h, new_w, interp=None):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
h, w (int): original image size
|
52 |
+
new_h, new_w (int): new image size
|
53 |
+
interp: PIL interpolation methods, defaults to bilinear.
|
54 |
+
"""
|
55 |
+
# TODO decide on PIL vs opencv
|
56 |
+
super().__init__()
|
57 |
+
if interp is None:
|
58 |
+
interp = Image.BILINEAR
|
59 |
+
self._set_attributes(locals())
|
60 |
+
|
61 |
+
def apply_image(self, imgs, interp=None):
|
62 |
+
dim_num = len(imgs.shape)
|
63 |
+
assert dim_num == 4
|
64 |
+
interp_method = interp if interp is not None else self.interp
|
65 |
+
resized_imgs = []
|
66 |
+
for img in imgs:
|
67 |
+
if len(img.shape) > 2 and img.shape[2] == 1:
|
68 |
+
pil_image = Image.fromarray(img[:, :, 0], mode="L")
|
69 |
+
else:
|
70 |
+
pil_image = Image.fromarray(img)
|
71 |
+
pil_image = pil_image.resize((self.new_w, self.new_h), interp_method)
|
72 |
+
ret = np.asarray(pil_image)
|
73 |
+
if len(img.shape) > 2 and img.shape[2] == 1:
|
74 |
+
ret = np.expand_dims(ret, -1)
|
75 |
+
resized_imgs.append(ret)
|
76 |
+
resized_imgs = np.stack(resized_imgs)
|
77 |
+
return resized_imgs
|
78 |
+
|
79 |
+
def apply_coords(self, coords):
|
80 |
+
coords[:, 0] = coords[:, 0] * (self.new_w * 1.0 / self.w)
|
81 |
+
coords[:, 1] = coords[:, 1] * (self.new_h * 1.0 / self.h)
|
82 |
+
return coords
|
83 |
+
|
84 |
+
def apply_box(self, boxes):
|
85 |
+
boxes = boxes[0]
|
86 |
+
new_boxes = super(BatchResizeTransform, self).apply_box(boxes[:,:4])
|
87 |
+
boxes[...,:4] = new_boxes
|
88 |
+
return boxes[None]
|
89 |
+
|
90 |
+
def apply_segmentation(self, segmentation):
|
91 |
+
if len(segmentation.shape)==3:
|
92 |
+
segmentation = segmentation[..., None]
|
93 |
+
segmentation = self.apply_image(segmentation, interp=Image.NEAREST)
|
94 |
+
segmentation = segmentation[..., 0]
|
95 |
+
else:
|
96 |
+
segmentation = self.apply_image(segmentation, interp=Image.NEAREST)
|
97 |
+
return segmentation
|
98 |
+
|
99 |
+
class EntityCropTransform(Transform):
|
100 |
+
"""
|
101 |
+
Consectively crop the images
|
102 |
+
"""
|
103 |
+
def __init__(self, crop_axises, crop_indexes):
|
104 |
+
super().__init__()
|
105 |
+
self._set_attributes(locals())
|
106 |
+
|
107 |
+
def apply_image(self, img):
|
108 |
+
"""
|
109 |
+
Args:
|
110 |
+
img (ndarray): of shape NxHxWxC, or HxWxC or HxW. The array can be
|
111 |
+
of type uint8 in range [0, 255], or floating point in range
|
112 |
+
[0, 1] or [0, 255]
|
113 |
+
returns:
|
114 |
+
ndarray: cropped images
|
115 |
+
"""
|
116 |
+
dim_num = len(img.shape)
|
117 |
+
imgs = []
|
118 |
+
|
119 |
+
for crop_axis in self.crop_axises:
|
120 |
+
x0, y0, x1, y1 = crop_axis
|
121 |
+
if dim_num <= 3:
|
122 |
+
crop_img = img[y0:y1, x0:x1]
|
123 |
+
else:
|
124 |
+
crop_img = img[..., y0:y1, x0:x1, :]
|
125 |
+
imgs.append(crop_img)
|
126 |
+
|
127 |
+
if dim_num <= 3:
|
128 |
+
imgs = np.stack(imgs, axis=0)
|
129 |
+
else:
|
130 |
+
imgs = np.concatenate(imgs, axis=0)
|
131 |
+
return imgs
|
132 |
+
|
133 |
+
def apply_coords(self, coords: np.ndarray, x0, y0):
|
134 |
+
coords[:, 0] -= x0
|
135 |
+
coords[:, 1] -= y0
|
136 |
+
return coords
|
137 |
+
|
138 |
+
def apply_box(self, box: np.ndarray) -> np.ndarray:
|
139 |
+
"""
|
140 |
+
box: Nx4, [x0, y0, x1, y1]
|
141 |
+
"""
|
142 |
+
idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
|
143 |
+
coords = np.asarray(box).reshape(-1, 4)[:, idxs].reshape(-1, 2)
|
144 |
+
split_boxes = []
|
145 |
+
crop_ws, crop_hs = [], []
|
146 |
+
for crop_axis in self.crop_axises:
|
147 |
+
startw, starth, endw, endh = crop_axis
|
148 |
+
coords_new = self.apply_coords(copy.deepcopy(coords), startw, starth).reshape((-1, 4, 2))
|
149 |
+
minxy = coords_new.min(axis=1)
|
150 |
+
maxxy = coords_new.max(axis=1)
|
151 |
+
trans_boxes = np.concatenate((minxy, maxxy), axis=1)
|
152 |
+
|
153 |
+
crop_ws.append(endw-startw)
|
154 |
+
crop_hs.append(endh-starth)
|
155 |
+
split_boxes.append(trans_boxes)
|
156 |
+
split_boxes = np.stack(split_boxes, axis=1)
|
157 |
+
### clip to the image boundary
|
158 |
+
## assert each crop size is equal
|
159 |
+
for crop_index, (crop_w, crop_h) in enumerate(zip(crop_ws, crop_hs)):
|
160 |
+
assert crop_w == crop_ws[0], "crop width is not equal, crop_{}: {}, crop_0: {}".format(crop_index, crop_w, crop_ws[0])
|
161 |
+
assert crop_h == crop_hs[0], "crop height is not equal, crop_{}: {}, crop_0: {}".format(crop_index, crop_h, crop_hs[0])
|
162 |
+
crop_w = crop_ws[0]
|
163 |
+
crop_h = crop_hs[0]
|
164 |
+
# pdb.set_trace()
|
165 |
+
split_boxes[...,0::2] = np.clip(split_boxes[...,0::2], 0, crop_w)
|
166 |
+
split_boxes[...,1::2] = np.clip(split_boxes[...,1::2], 0, crop_h)
|
167 |
+
valid_inds = (split_boxes[...,2]>split_boxes[...,0]) & (split_boxes[...,3]>split_boxes[...,1])
|
168 |
+
split_infos = np.concatenate((split_boxes, valid_inds[...,None]), axis=-1)
|
169 |
+
return split_infos
|
170 |
+
|
171 |
+
class BatchResizeShortestEdge(Augmentation):
|
172 |
+
"""
|
173 |
+
Scale the shorter edge to the given size, with a limit of `max_size` on the longer edge.
|
174 |
+
If `max_size` is reached, then downscale so that the longer edge does not exceed max_size.
|
175 |
+
"""
|
176 |
+
|
177 |
+
def __init__(
|
178 |
+
self, short_edge_length, max_size=sys.maxsize, sample_style="range", interp=Image.BILINEAR
|
179 |
+
):
|
180 |
+
"""
|
181 |
+
Args:
|
182 |
+
short_edge_length (list[int]): If ``sample_style=="range"``,
|
183 |
+
a [min, max] interval from which to sample the shortest edge length.
|
184 |
+
If ``sample_style=="choice"``, a list of shortest edge lengths to sample from.
|
185 |
+
max_size (int): maximum allowed longest edge length.
|
186 |
+
sample_style (str): either "range" or "choice".
|
187 |
+
"""
|
188 |
+
super().__init__()
|
189 |
+
assert sample_style in ["range", "choice"], sample_style
|
190 |
+
|
191 |
+
self.is_range = sample_style == "range"
|
192 |
+
if isinstance(short_edge_length, int):
|
193 |
+
short_edge_length = (short_edge_length, short_edge_length)
|
194 |
+
if self.is_range:
|
195 |
+
assert len(short_edge_length) == 2, (
|
196 |
+
"short_edge_length must be two values using 'range' sample style."
|
197 |
+
f" Got {short_edge_length}!"
|
198 |
+
)
|
199 |
+
self._init(locals())
|
200 |
+
|
201 |
+
def get_transform(self, image):
|
202 |
+
dim_num = len(image.shape)
|
203 |
+
assert dim_num == 4, "the tensor should be in [B, H, W, C]"
|
204 |
+
h, w = image.shape[1:3]
|
205 |
+
if self.is_range:
|
206 |
+
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
|
207 |
+
else:
|
208 |
+
size = np.random.choice(self.short_edge_length)
|
209 |
+
if size == 0:
|
210 |
+
return NoOpTransform()
|
211 |
+
|
212 |
+
scale = size * 1.0 / min(h, w)
|
213 |
+
if h < w:
|
214 |
+
newh, neww = size, scale * w
|
215 |
+
else:
|
216 |
+
newh, neww = scale * h, size
|
217 |
+
if max(newh, neww) > self.max_size:
|
218 |
+
scale = self.max_size * 1.0 / max(newh, neww)
|
219 |
+
newh = newh * scale
|
220 |
+
neww = neww * scale
|
221 |
+
neww = int(neww + 0.5)
|
222 |
+
newh = int(newh + 0.5)
|
223 |
+
return BatchResizeTransform(h, w, newh, neww, self.interp)
|
224 |
+
|
225 |
+
class EntityCrop(Augmentation):
|
226 |
+
def __init__(self, crop_ratio, stride_ratio, sample_num, is_train):
|
227 |
+
super().__init__()
|
228 |
+
self._init(locals())
|
229 |
+
|
230 |
+
def get_transform(self, image):
|
231 |
+
h, w = image.shape[:2]
|
232 |
+
crop_axises, crop_indexes = self.get_crop_axises((h, w))
|
233 |
+
transform = EntityCropTransform(crop_axises, crop_indexes)
|
234 |
+
return transform
|
235 |
+
|
236 |
+
def get_crop_axises(self, image_size):
|
237 |
+
h, w = image_size
|
238 |
+
crop_w = int(self.crop_ratio*w)
|
239 |
+
crop_h = int(self.crop_ratio*h)
|
240 |
+
# if self.is_train:
|
241 |
+
stride_w = int(self.stride_ratio*w)
|
242 |
+
stride_h = int(self.stride_ratio*h)
|
243 |
+
# pdb.set_trace()
|
244 |
+
|
245 |
+
crop_axises = []
|
246 |
+
for starth in range(0, h, stride_h):
|
247 |
+
for startw in range(0, w, stride_w):
|
248 |
+
endh = min(starth+crop_h, h)
|
249 |
+
endw = min(startw+crop_w, w)
|
250 |
+
starth = int(endh-crop_h)
|
251 |
+
startw = int(endw-crop_w)
|
252 |
+
crop_axises.append([startw, starth, endw, endh])
|
253 |
+
if self.is_train:
|
254 |
+
crop_indexes = random.sample([i for i in range(len(crop_axises))], self.sample_num)
|
255 |
+
crop_axises = [crop_axises[i] for i in crop_indexes]
|
256 |
+
else:
|
257 |
+
crop_indexes = [i for i in range(self.sample_num)]
|
258 |
+
# left_upper = [0, 0, crop_w, crop_h]
|
259 |
+
# right_upper = [w-crop_w, 0, w, crop_h]
|
260 |
+
# left_bottom = [0, h-crop_h, crop_w, h]
|
261 |
+
# right_bottom = [w-crop_w, h-crop_h, w, h]
|
262 |
+
|
263 |
+
# crop_axises = [left_upper, right_upper, left_bottom, right_bottom]
|
264 |
+
# crop_indexes = [0,1,2,3]
|
265 |
+
assert len(crop_axises)==len(crop_indexes)
|
266 |
+
return crop_axises, crop_indexes
|
267 |
+
|
268 |
+
def transform_instance_annotations_crop(
|
269 |
+
annotation, transforms, image_size, *, keypoint_hflip_indices=None
|
270 |
+
):
|
271 |
+
"""
|
272 |
+
Apply transforms to box, segmentation and keypoints annotations of a single instance.
|
273 |
+
|
274 |
+
It will use `transforms.apply_box` for the box, and
|
275 |
+
`transforms.apply_coords` for segmentation polygons & keypoints.
|
276 |
+
If you need anything more specially designed for each data structure,
|
277 |
+
you'll need to implement your own version of this function or the transforms.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
annotation (dict): dict of instance annotations for a single instance.
|
281 |
+
It will be modified in-place.
|
282 |
+
transforms (TransformList or list[Transform]):
|
283 |
+
image_size (tuple): the height, width of the transformed image
|
284 |
+
keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.
|
285 |
+
|
286 |
+
Returns:
|
287 |
+
dict:
|
288 |
+
the same input dict with fields "bbox", "segmentation", "keypoints"
|
289 |
+
transformed according to `transforms`.
|
290 |
+
The "bbox_mode" field will be set to XYXY_ABS.
|
291 |
+
"""
|
292 |
+
if isinstance(transforms, (tuple, list)):
|
293 |
+
transforms = T.TransformList(transforms)
|
294 |
+
# bbox is 1d (per-instance bounding box)
|
295 |
+
bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS)
|
296 |
+
|
297 |
+
# clip transformed bbox to image size
|
298 |
+
bboxes_info = transforms.apply_box(np.array([bbox]))[0].clip(min=0)
|
299 |
+
annotation["bbox"] = np.minimum(bbox, list(image_size + image_size)[::-1])
|
300 |
+
annotation["bbox"] = bboxes_info[...,:4]
|
301 |
+
annotation["bbox_mode"] = BoxMode.XYXY_ABS
|
302 |
+
annotation["bbox_valid"] = bboxes_info[...,4]
|
303 |
+
for transform_type in transforms:
|
304 |
+
if isinstance(transform_type, EntityCropTransform):
|
305 |
+
annotation["crop_axises"] = transform_type.crop_axises
|
306 |
+
annotation["crop_indexes"] = transform_type.crop_indexes
|
307 |
+
|
308 |
+
if "segmentation" in annotation:
|
309 |
+
segm = annotation["segmentation"]
|
310 |
+
assert isinstance(segm, dict), "requiring segmentation encoding -> RLE"
|
311 |
+
# RLE
|
312 |
+
mask = mask_util.decode(segm)
|
313 |
+
mask = transforms.apply_segmentation(mask)
|
314 |
+
annotation["segmentation"] = mask
|
315 |
+
return annotation
|
316 |
+
|
317 |
+
def annotations_to_instances_crop(annos, image_size, mask_format="polygon", return_indexes=False):
|
318 |
+
"""
|
319 |
+
Create an :class:`Instances` object used by the models,
|
320 |
+
from instance annotations in the dataset dict.
|
321 |
+
|
322 |
+
Args:
|
323 |
+
annos (list[dict]): a list of instance annotations in one image, each
|
324 |
+
element for one instance.
|
325 |
+
image_size (tuple): height, width
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
Instances:
|
329 |
+
It will contain fields "gt_boxes", "gt_classes",
|
330 |
+
"gt_masks", "gt_keypoints", if they can be obtained from `annos`.
|
331 |
+
This is the format that builtin models expect.
|
332 |
+
"""
|
333 |
+
###
|
334 |
+
all_boxes = []
|
335 |
+
all_boxes_valid = []
|
336 |
+
all_classes = []
|
337 |
+
all_segmentations = []
|
338 |
+
all_iscrowds = []
|
339 |
+
# pdb.set_trace()
|
340 |
+
annos_num = len(annos)
|
341 |
+
patches_num = len(annos[0]["bbox"])
|
342 |
+
for ann_index, obj in enumerate(annos):
|
343 |
+
for split_index in range(len(obj["bbox"])):
|
344 |
+
all_boxes.append(BoxMode.convert(obj["bbox"][split_index], obj["bbox_mode"], BoxMode.XYXY_ABS))
|
345 |
+
all_boxes_valid.append(obj["bbox_valid"][split_index])
|
346 |
+
all_classes.append(obj["category_id"])
|
347 |
+
all_segmentations.append(obj["segmentation"][split_index])
|
348 |
+
all_iscrowds.append(obj["iscrowd"])
|
349 |
+
# print("ann_index:{}, split_index:{}".format(ann_index, split_index))
|
350 |
+
|
351 |
+
new_targets = []
|
352 |
+
crop_axises = annos[0]["crop_axises"]
|
353 |
+
# pdb.set_trace()
|
354 |
+
crop_size = (crop_axises[0][3], crop_axises[0][2])
|
355 |
+
crop_axises = torch.tensor(crop_axises)
|
356 |
+
|
357 |
+
for split_index in range(patches_num):
|
358 |
+
new_targets.append(Instances(crop_size))
|
359 |
+
# pdb.set_trace()
|
360 |
+
## boxes
|
361 |
+
new_targets[-1].gt_boxes = Boxes(all_boxes[split_index::patches_num])
|
362 |
+
new_targets[-1].gt_boxes_valid = torch.tensor(all_boxes_valid[split_index::patches_num], dtype=torch.int64)
|
363 |
+
## categories
|
364 |
+
new_targets[-1].gt_classes = torch.tensor(all_classes[split_index::patches_num], dtype=torch.int64)
|
365 |
+
|
366 |
+
## masks
|
367 |
+
if "segmentation" in annos[0]:
|
368 |
+
new_targets[-1].gt_masks = BitMasks(torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in all_segmentations[split_index::patches_num]]))
|
369 |
+
|
370 |
+
# pdb.set_trace()
|
371 |
+
if return_indexes:
|
372 |
+
return new_targets, crop_axises, annos[0]["crop_indexes"]
|
373 |
+
else:
|
374 |
+
return new_targets, crop_axises
|
375 |
+
|
376 |
+
class EntityCascadedCrop(Augmentation):
|
377 |
+
def __init__(self, crop_ratio, stride_ratio, sample_num, cascade_num, is_train):
|
378 |
+
super().__init__()
|
379 |
+
self._init(locals())
|
380 |
+
|
381 |
+
def get_transform(self, image):
|
382 |
+
h, w = image.shape[:2]
|
383 |
+
crop_axises, crop_indexes = self.get_crop_axises((h, w))
|
384 |
+
transform = EntityCropTransform(crop_axises, crop_indexes)
|
385 |
+
return transform
|
386 |
+
|
387 |
+
def get_crop_axises(self, image_size):
|
388 |
+
h, w = image_size
|
389 |
+
# for i in range(self.cascade_num):
|
390 |
+
# crop_w = int((self.crop_ratio**(i+1))*w)
|
391 |
+
# crop_h = int((self.crop_ratio**(i+1))*h)
|
392 |
+
# stride_w = int((self.stride_ratio**(i+1))*w)
|
393 |
+
# stride_h = int((self.stride_ratio**(i+1))*h)
|
394 |
+
# crop_axises = []
|
395 |
+
# if i==0:
|
396 |
+
|
397 |
+
# for starth in range(0, )
|
398 |
+
|
399 |
+
|
400 |
+
crop_axises = []
|
401 |
+
for starth in range(0, h, stride_h):
|
402 |
+
for startw in range(0, w, stride_w):
|
403 |
+
endh = min(starth+crop_h, h)
|
404 |
+
endw = min(startw+crop_w, w)
|
405 |
+
starth = int(endh-crop_h)
|
406 |
+
startw = int(endw-crop_w)
|
407 |
+
crop_axises.append([startw, starth, endw, endh])
|
408 |
+
if self.is_train:
|
409 |
+
crop_indexes = random.sample([i for i in range(len(crop_axises))], self.sample_num)
|
410 |
+
crop_axises = [crop_axises[i] for i in crop_indexes]
|
411 |
+
else:
|
412 |
+
crop_indexes = [i for i in range(self.sample_num)]
|
413 |
+
# left_upper = [0, 0, crop_w, crop_h]
|
414 |
+
# right_upper = [w-crop_w, 0, w, crop_h]
|
415 |
+
# left_bottom = [0, h-crop_h, crop_w, h]
|
416 |
+
# right_bottom = [w-crop_w, h-crop_h, w, h]
|
417 |
+
|
418 |
+
# crop_axises = [left_upper, right_upper, left_bottom, right_bottom]
|
419 |
+
# crop_indexes = [0,1,2,3]
|
420 |
+
assert len(crop_axises)==len(crop_indexes)
|
421 |
+
return crop_axises, crop_indexes
|
annotator/entityseg/mask2former/maskformer_model.py
ADDED
@@ -0,0 +1,446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from detectron2.config import configurable
|
9 |
+
from detectron2.data import MetadataCatalog
|
10 |
+
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
|
11 |
+
from detectron2.modeling.backbone import Backbone
|
12 |
+
from detectron2.modeling.postprocessing import sem_seg_postprocess
|
13 |
+
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
|
14 |
+
from detectron2.utils.memory import retry_if_cuda_oom
|
15 |
+
|
16 |
+
from .modeling.criterion import SetCriterion
|
17 |
+
from .modeling.matcher import HungarianMatcher
|
18 |
+
|
19 |
+
|
20 |
+
@META_ARCH_REGISTRY.register()
|
21 |
+
class MaskFormer(nn.Module):
|
22 |
+
"""
|
23 |
+
Main class for mask classification semantic segmentation architectures.
|
24 |
+
"""
|
25 |
+
|
26 |
+
@configurable
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
*,
|
30 |
+
cfg,
|
31 |
+
backbone: Backbone,
|
32 |
+
sem_seg_head: nn.Module,
|
33 |
+
criterion: nn.Module,
|
34 |
+
num_queries: int,
|
35 |
+
object_mask_threshold: float,
|
36 |
+
overlap_threshold: float,
|
37 |
+
metadata,
|
38 |
+
size_divisibility: int,
|
39 |
+
sem_seg_postprocess_before_inference: bool,
|
40 |
+
pixel_mean: Tuple[float],
|
41 |
+
pixel_std: Tuple[float],
|
42 |
+
# inference
|
43 |
+
semantic_on: bool,
|
44 |
+
panoptic_on: bool,
|
45 |
+
instance_on: bool,
|
46 |
+
test_topk_per_image: int,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
backbone: a backbone module, must follow detectron2's backbone interface
|
51 |
+
sem_seg_head: a module that predicts semantic segmentation from backbone features
|
52 |
+
criterion: a module that defines the loss
|
53 |
+
num_queries: int, number of queries
|
54 |
+
object_mask_threshold: float, threshold to filter query based on classification score
|
55 |
+
for panoptic segmentation inference
|
56 |
+
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
|
57 |
+
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
|
58 |
+
segmentation inference
|
59 |
+
size_divisibility: Some backbones require the input height and width to be divisible by a
|
60 |
+
specific integer. We can use this to override such requirement.
|
61 |
+
sem_seg_postprocess_before_inference: whether to resize the prediction back
|
62 |
+
to original input size before semantic segmentation inference or after.
|
63 |
+
For high-resolution dataset like Mapillary, resizing predictions before
|
64 |
+
inference will cause OOM error.
|
65 |
+
pixel_mean, pixel_std: list or tuple with #channels element, representing
|
66 |
+
the per-channel mean and std to be used to normalize the input image
|
67 |
+
semantic_on: bool, whether to output semantic segmentation prediction
|
68 |
+
instance_on: bool, whether to output instance segmentation prediction
|
69 |
+
panoptic_on: bool, whether to output panoptic segmentation prediction
|
70 |
+
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
|
71 |
+
"""
|
72 |
+
super().__init__()
|
73 |
+
self.cfg = cfg
|
74 |
+
self.backbone = backbone
|
75 |
+
self.sem_seg_head = sem_seg_head
|
76 |
+
self.criterion = criterion
|
77 |
+
self.num_queries = num_queries
|
78 |
+
self.overlap_threshold = overlap_threshold
|
79 |
+
self.entity_enable = self.cfg.ENTITY.ENABLE
|
80 |
+
self.object_mask_threshold = object_mask_threshold
|
81 |
+
self.metadata = metadata
|
82 |
+
if size_divisibility < 0:
|
83 |
+
# use backbone size_divisibility if not set
|
84 |
+
size_divisibility = self.backbone.size_divisibility
|
85 |
+
self.size_divisibility = size_divisibility
|
86 |
+
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
|
87 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
88 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
89 |
+
|
90 |
+
# additional args
|
91 |
+
self.semantic_on = semantic_on
|
92 |
+
self.instance_on = instance_on
|
93 |
+
self.panoptic_on = panoptic_on
|
94 |
+
self.test_topk_per_image = test_topk_per_image
|
95 |
+
|
96 |
+
if not self.semantic_on:
|
97 |
+
assert self.sem_seg_postprocess_before_inference
|
98 |
+
|
99 |
+
@classmethod
|
100 |
+
def from_config(cls, cfg):
|
101 |
+
backbone = build_backbone(cfg)
|
102 |
+
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
|
103 |
+
|
104 |
+
# Loss parameters:
|
105 |
+
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
106 |
+
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
|
107 |
+
|
108 |
+
# loss weights
|
109 |
+
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
|
110 |
+
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
|
111 |
+
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
|
112 |
+
|
113 |
+
# building criterion
|
114 |
+
matcher = HungarianMatcher(
|
115 |
+
cost_class=class_weight,
|
116 |
+
cost_mask=mask_weight,
|
117 |
+
cost_dice=dice_weight,
|
118 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
119 |
+
)
|
120 |
+
|
121 |
+
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
|
122 |
+
|
123 |
+
if deep_supervision:
|
124 |
+
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
125 |
+
aux_weight_dict = {}
|
126 |
+
for i in range(dec_layers - 1):
|
127 |
+
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
|
128 |
+
weight_dict.update(aux_weight_dict)
|
129 |
+
|
130 |
+
losses = ["labels", "masks"]
|
131 |
+
|
132 |
+
criterion = SetCriterion(
|
133 |
+
sem_seg_head.num_classes,
|
134 |
+
matcher=matcher,
|
135 |
+
weight_dict=weight_dict,
|
136 |
+
eos_coef=no_object_weight,
|
137 |
+
losses=losses,
|
138 |
+
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
|
139 |
+
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
|
140 |
+
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
|
141 |
+
)
|
142 |
+
|
143 |
+
return {
|
144 |
+
"cfg": cfg,
|
145 |
+
"backbone": backbone,
|
146 |
+
"sem_seg_head": sem_seg_head,
|
147 |
+
"criterion": criterion,
|
148 |
+
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
|
149 |
+
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
|
150 |
+
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
|
151 |
+
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
|
152 |
+
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
|
153 |
+
"sem_seg_postprocess_before_inference": (
|
154 |
+
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
|
155 |
+
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
|
156 |
+
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
|
157 |
+
),
|
158 |
+
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
|
159 |
+
"pixel_std": cfg.MODEL.PIXEL_STD,
|
160 |
+
# inference
|
161 |
+
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
|
162 |
+
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
|
163 |
+
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
|
164 |
+
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
|
165 |
+
}
|
166 |
+
|
167 |
+
@property
|
168 |
+
def device(self):
|
169 |
+
return self.pixel_mean.device
|
170 |
+
|
171 |
+
def forward(self, batched_inputs):
|
172 |
+
"""
|
173 |
+
Args:
|
174 |
+
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
|
175 |
+
Each item in the list contains the inputs for one image.
|
176 |
+
For now, each item in the list is a dict that contains:
|
177 |
+
* "image": Tensor, image in (C, H, W) format.
|
178 |
+
* "instances": per-region ground truth
|
179 |
+
* Other information that's included in the original dicts, such as:
|
180 |
+
"height", "width" (int): the output resolution of the model (may be different
|
181 |
+
from input resolution), used in inference.
|
182 |
+
Returns:
|
183 |
+
list[dict]:
|
184 |
+
each dict has the results for one image. The dict contains the following keys:
|
185 |
+
|
186 |
+
* "sem_seg":
|
187 |
+
A Tensor that represents the
|
188 |
+
per-pixel segmentation prediced by the head.
|
189 |
+
The prediction has shape KxHxW that represents the logits of
|
190 |
+
each class for each pixel.
|
191 |
+
* "panoptic_seg":
|
192 |
+
A tuple that represent panoptic output
|
193 |
+
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
|
194 |
+
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
|
195 |
+
Each dict contains keys "id", "category_id", "isthing".
|
196 |
+
"""
|
197 |
+
images = [x["image"].to(self.device) for x in batched_inputs]
|
198 |
+
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
|
199 |
+
images = ImageList.from_tensors(images, self.size_divisibility)
|
200 |
+
|
201 |
+
features = self.backbone(images.tensor)
|
202 |
+
outputs = self.sem_seg_head(features)
|
203 |
+
|
204 |
+
if self.training:
|
205 |
+
# mask classification target
|
206 |
+
if "instances" in batched_inputs[0]:
|
207 |
+
if self.cfg.ENTITY.ENABLE:
|
208 |
+
for i in range(len(batched_inputs)):
|
209 |
+
batched_inputs[i]["instances"].gt_classes[:] = 0
|
210 |
+
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
|
211 |
+
targets = self.prepare_targets(gt_instances, images)
|
212 |
+
else:
|
213 |
+
targets = None
|
214 |
+
|
215 |
+
# bipartite matching-based loss
|
216 |
+
losses = self.criterion(outputs, targets)
|
217 |
+
|
218 |
+
for k in list(losses.keys()):
|
219 |
+
if k in self.criterion.weight_dict:
|
220 |
+
losses[k] *= self.criterion.weight_dict[k]
|
221 |
+
else:
|
222 |
+
# remove this loss if not specified in `weight_dict`
|
223 |
+
losses.pop(k)
|
224 |
+
return losses
|
225 |
+
else:
|
226 |
+
mask_cls_results = outputs["pred_logits"]
|
227 |
+
mask_pred_results = outputs["pred_masks"]
|
228 |
+
# upsample masks
|
229 |
+
mask_pred_results = F.interpolate(
|
230 |
+
mask_pred_results,
|
231 |
+
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
|
232 |
+
mode="bilinear",
|
233 |
+
align_corners=False,
|
234 |
+
)
|
235 |
+
|
236 |
+
del outputs
|
237 |
+
|
238 |
+
processed_results = []
|
239 |
+
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
|
240 |
+
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
|
241 |
+
):
|
242 |
+
height = input_per_image.get("height", image_size[0])
|
243 |
+
width = input_per_image.get("width", image_size[1])
|
244 |
+
processed_results.append({})
|
245 |
+
|
246 |
+
if self.sem_seg_postprocess_before_inference:
|
247 |
+
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
|
248 |
+
mask_pred_result, image_size, height, width
|
249 |
+
)
|
250 |
+
mask_cls_result = mask_cls_result.to(mask_pred_result)
|
251 |
+
|
252 |
+
# semantic segmentation inference
|
253 |
+
if self.semantic_on:
|
254 |
+
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
|
255 |
+
if not self.sem_seg_postprocess_before_inference:
|
256 |
+
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
|
257 |
+
processed_results[-1]["sem_seg"] = r
|
258 |
+
|
259 |
+
# panoptic segmentation inference
|
260 |
+
if self.panoptic_on:
|
261 |
+
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
|
262 |
+
processed_results[-1]["panoptic_seg"] = panoptic_r
|
263 |
+
|
264 |
+
# instance segmentation and entity segmentation inference
|
265 |
+
if self.instance_on and self.cfg.ENTITY.ENABLE:
|
266 |
+
instance_r = retry_if_cuda_oom(self.instance_inference_nonoverlap)(mask_cls_result, mask_pred_result)
|
267 |
+
processed_results[-1]["instances"] = instance_r
|
268 |
+
else:
|
269 |
+
instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
|
270 |
+
processed_results[-1]["instances"] = instance_r
|
271 |
+
|
272 |
+
return processed_results
|
273 |
+
|
274 |
+
def prepare_targets(self, targets, images):
|
275 |
+
h_pad, w_pad = images.tensor.shape[-2:]
|
276 |
+
new_targets = []
|
277 |
+
for targets_per_image in targets:
|
278 |
+
# pad gt
|
279 |
+
gt_masks = targets_per_image.gt_masks
|
280 |
+
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
|
281 |
+
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
|
282 |
+
new_targets.append(
|
283 |
+
{
|
284 |
+
"labels": targets_per_image.gt_classes,
|
285 |
+
"masks": padded_masks,
|
286 |
+
}
|
287 |
+
)
|
288 |
+
return new_targets
|
289 |
+
|
290 |
+
def semantic_inference(self, mask_cls, mask_pred):
|
291 |
+
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
|
292 |
+
mask_pred = mask_pred.sigmoid()
|
293 |
+
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
|
294 |
+
return semseg
|
295 |
+
|
296 |
+
def panoptic_inference(self, mask_cls, mask_pred):
|
297 |
+
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
|
298 |
+
mask_pred = mask_pred.sigmoid()
|
299 |
+
|
300 |
+
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
|
301 |
+
cur_scores = scores[keep]
|
302 |
+
cur_classes = labels[keep]
|
303 |
+
cur_masks = mask_pred[keep]
|
304 |
+
cur_mask_cls = mask_cls[keep]
|
305 |
+
cur_mask_cls = cur_mask_cls[:, :-1]
|
306 |
+
|
307 |
+
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
|
308 |
+
|
309 |
+
h, w = cur_masks.shape[-2:]
|
310 |
+
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
|
311 |
+
segments_info = []
|
312 |
+
|
313 |
+
current_segment_id = 0
|
314 |
+
|
315 |
+
if cur_masks.shape[0] == 0:
|
316 |
+
# We didn't detect any mask :(
|
317 |
+
return panoptic_seg, segments_info
|
318 |
+
else:
|
319 |
+
# take argmax
|
320 |
+
cur_mask_ids = cur_prob_masks.argmax(0)
|
321 |
+
stuff_memory_list = {}
|
322 |
+
for k in range(cur_classes.shape[0]):
|
323 |
+
pred_class = cur_classes[k].item()
|
324 |
+
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
325 |
+
mask_area = (cur_mask_ids == k).sum().item()
|
326 |
+
original_area = (cur_masks[k] >= 0.5).sum().item()
|
327 |
+
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
|
328 |
+
|
329 |
+
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
|
330 |
+
if mask_area / original_area < self.overlap_threshold:
|
331 |
+
continue
|
332 |
+
|
333 |
+
# merge stuff regions
|
334 |
+
if not isthing:
|
335 |
+
if int(pred_class) in stuff_memory_list.keys():
|
336 |
+
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
|
337 |
+
continue
|
338 |
+
else:
|
339 |
+
stuff_memory_list[int(pred_class)] = current_segment_id + 1
|
340 |
+
|
341 |
+
current_segment_id += 1
|
342 |
+
panoptic_seg[mask] = current_segment_id
|
343 |
+
|
344 |
+
segments_info.append(
|
345 |
+
{
|
346 |
+
"id": current_segment_id,
|
347 |
+
"isthing": bool(isthing),
|
348 |
+
"category_id": int(pred_class),
|
349 |
+
}
|
350 |
+
)
|
351 |
+
|
352 |
+
return panoptic_seg, segments_info
|
353 |
+
|
354 |
+
def instance_inference(self, mask_cls, mask_pred):
|
355 |
+
# mask_pred is already processed to have the same shape as original input
|
356 |
+
image_size = mask_pred.shape[-2:]
|
357 |
+
|
358 |
+
# [Q, K]
|
359 |
+
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
|
360 |
+
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
|
361 |
+
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
|
362 |
+
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
|
363 |
+
labels_per_image = labels[topk_indices]
|
364 |
+
|
365 |
+
# topk_indices = topk_indices // self.sem_seg_head.num_classes
|
366 |
+
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode='trunc')
|
367 |
+
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
|
368 |
+
mask_pred = mask_pred[topk_indices]
|
369 |
+
|
370 |
+
# if this is panoptic segmentation, we only keep the "thing" classes
|
371 |
+
if self.panoptic_on:
|
372 |
+
keep = torch.zeros_like(scores_per_image).bool()
|
373 |
+
for i, lab in enumerate(labels_per_image):
|
374 |
+
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
|
375 |
+
|
376 |
+
scores_per_image = scores_per_image[keep]
|
377 |
+
labels_per_image = labels_per_image[keep]
|
378 |
+
mask_pred = mask_pred[keep]
|
379 |
+
|
380 |
+
result = Instances(image_size)
|
381 |
+
# mask (before sigmoid)
|
382 |
+
result.pred_masks = (mask_pred > 0).float()
|
383 |
+
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
|
384 |
+
# Uncomment the following to get boxes from masks (this is slow)
|
385 |
+
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
|
386 |
+
|
387 |
+
# calculate average mask prob
|
388 |
+
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
|
389 |
+
result.scores = scores_per_image * mask_scores_per_image
|
390 |
+
result.pred_classes = labels_per_image
|
391 |
+
return result
|
392 |
+
|
393 |
+
def instance_inference_nonoverlap(self, mask_cls, mask_pred):
|
394 |
+
# mask_pred is already processed to have the same shape as original input
|
395 |
+
image_size = mask_pred.shape[-2:]
|
396 |
+
|
397 |
+
# [Q, K]
|
398 |
+
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
|
399 |
+
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
|
400 |
+
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
|
401 |
+
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
|
402 |
+
labels_per_image = labels[topk_indices]
|
403 |
+
|
404 |
+
# topk_indices = topk_indices // self.sem_seg_head.num_classes
|
405 |
+
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode='trunc')
|
406 |
+
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
|
407 |
+
mask_pred = mask_pred[topk_indices]
|
408 |
+
|
409 |
+
###### ranks
|
410 |
+
pred_masks = (mask_pred>0).float()
|
411 |
+
pred_masks_logits = mask_pred.sigmoid()
|
412 |
+
pred_scores = scores_per_image
|
413 |
+
|
414 |
+
_, m_H, m_W = pred_masks.shape
|
415 |
+
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device)
|
416 |
+
sorted_scores, ranks = torch.sort(pred_scores)
|
417 |
+
ranks = ranks + 1
|
418 |
+
for index in ranks:
|
419 |
+
mask_id[(pred_masks[index-1]==1)] = int(index)
|
420 |
+
# re-generate mask
|
421 |
+
new_scores = []
|
422 |
+
new_masks = []
|
423 |
+
new_masks_logits = []
|
424 |
+
entity_nums = len(ranks)
|
425 |
+
for ii in range(entity_nums):
|
426 |
+
index = int(ranks[entity_nums-ii-1])
|
427 |
+
score = sorted_scores[entity_nums-ii-1]
|
428 |
+
new_scores.append(score)
|
429 |
+
new_masks.append((mask_id==index).float())
|
430 |
+
new_masks_logits.append(pred_masks_logits[index-1])
|
431 |
+
|
432 |
+
new_scores = torch.stack(new_scores)
|
433 |
+
new_masks = torch.stack(new_masks)
|
434 |
+
new_masks_logits = torch.stack(new_masks_logits)
|
435 |
+
|
436 |
+
result = Instances(image_size)
|
437 |
+
# mask (before sigmoid)
|
438 |
+
result.pred_masks = new_masks
|
439 |
+
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4))
|
440 |
+
# Uncomment the following to get boxes from masks (this is slow)
|
441 |
+
|
442 |
+
# calculate average mask prob
|
443 |
+
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
|
444 |
+
result.scores = new_scores * mask_scores_per_image
|
445 |
+
result.pred_classes = labels_per_image
|
446 |
+
return result
|
annotator/entityseg/mask2former/modeling/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .backbone.swin import D2SwinTransformer
|
3 |
+
from .backbone.hornet import D2HorNet
|
4 |
+
from .pixel_decoder.fpn import BasePixelDecoder
|
5 |
+
from .pixel_decoder.msdeformattn import MSDeformAttnPixelDecoder
|
6 |
+
from .meta_arch.mask_former_head import MaskFormerHead
|
7 |
+
from .meta_arch.per_pixel_baseline import PerPixelBaselineHead, PerPixelBaselinePlusHead
|
annotator/entityseg/mask2former/modeling/backbone/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
annotator/entityseg/mask2former/modeling/backbone/hornet.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
|
3 |
+
# All rights reserved.
|
4 |
+
|
5 |
+
# This source code is licensed under the license found in the
|
6 |
+
# LICENSE file in the root directory of this source tree.
|
7 |
+
|
8 |
+
from functools import partial
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from timm.models.layers import trunc_normal_, DropPath
|
13 |
+
from timm.models.registry import register_model
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import torch.fft
|
17 |
+
import math
|
18 |
+
|
19 |
+
import traceback
|
20 |
+
import torch.utils.checkpoint as checkpoint
|
21 |
+
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
|
22 |
+
|
23 |
+
|
24 |
+
if 'DWCONV_IMPL' in os.environ:
|
25 |
+
try:
|
26 |
+
sys.path.append(os.environ['DWCONV_IMPL'])
|
27 |
+
from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
|
28 |
+
def get_dwconv(dim, kernel, bias):
|
29 |
+
return DepthWiseConv2dImplicitGEMM(dim, kernel, bias)
|
30 |
+
print('Using Megvii large kernel dw conv impl')
|
31 |
+
except:
|
32 |
+
print(traceback.format_exc())
|
33 |
+
def get_dwconv(dim, kernel, bias):
|
34 |
+
return nn.Conv2d(dim, dim, kernel_size=kernel, padding=(kernel-1)//2 ,bias=bias, groups=dim)
|
35 |
+
|
36 |
+
print('[fail to use Megvii Large kernel] Using PyTorch large kernel dw conv impl')
|
37 |
+
else:
|
38 |
+
def get_dwconv(dim, kernel, bias):
|
39 |
+
return nn.Conv2d(dim, dim, kernel_size=kernel, padding=(kernel-1)//2 ,bias=bias, groups=dim)
|
40 |
+
|
41 |
+
print('Using PyTorch large kernel dw conv impl')
|
42 |
+
|
43 |
+
class GlobalLocalFilter(nn.Module):
|
44 |
+
def __init__(self, dim, h=14, w=8):
|
45 |
+
super().__init__()
|
46 |
+
self.dw = nn.Conv2d(dim // 2, dim // 2, kernel_size=3, padding=1, bias=False, groups=dim // 2)
|
47 |
+
self.complex_weight = nn.Parameter(torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02)
|
48 |
+
trunc_normal_(self.complex_weight, std=.02)
|
49 |
+
self.pre_norm = LayerNorm(dim, eps=1e-6, data_format='channels_first')
|
50 |
+
self.post_norm = LayerNorm(dim, eps=1e-6, data_format='channels_first')
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
x = self.pre_norm(x)
|
54 |
+
x1, x2 = torch.chunk(x, 2, dim=1)
|
55 |
+
x1 = self.dw(x1)
|
56 |
+
|
57 |
+
x2 = x2.to(torch.float32)
|
58 |
+
B, C, a, b = x2.shape
|
59 |
+
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho')
|
60 |
+
|
61 |
+
weight = self.complex_weight
|
62 |
+
if not weight.shape[1:3] == x2.shape[2:4]:
|
63 |
+
weight = F.interpolate(weight.permute(3,0,1,2), size=x2.shape[2:4], mode='bilinear', align_corners=True).permute(1,2,3,0)
|
64 |
+
|
65 |
+
weight = torch.view_as_complex(weight.contiguous())
|
66 |
+
|
67 |
+
x2 = x2 * weight
|
68 |
+
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho')
|
69 |
+
|
70 |
+
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)], dim=2).reshape(B, 2 * C, a, b)
|
71 |
+
x = self.post_norm(x)
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class gnconv(nn.Module):
|
76 |
+
def __init__(self, dim, order=5, gflayer=None, h=14, w=8, s=1.0):
|
77 |
+
super().__init__()
|
78 |
+
self.order = order
|
79 |
+
self.dims = [dim // 2 ** i for i in range(order)]
|
80 |
+
self.dims.reverse()
|
81 |
+
self.proj_in = nn.Conv2d(dim, 2*dim, 1)
|
82 |
+
|
83 |
+
if gflayer is None:
|
84 |
+
self.dwconv = get_dwconv(sum(self.dims), 7, True)
|
85 |
+
else:
|
86 |
+
self.dwconv = gflayer(sum(self.dims), h=h, w=w)
|
87 |
+
|
88 |
+
self.proj_out = nn.Conv2d(dim, dim, 1)
|
89 |
+
|
90 |
+
self.pws = nn.ModuleList(
|
91 |
+
[nn.Conv2d(self.dims[i], self.dims[i+1], 1) for i in range(order-1)]
|
92 |
+
)
|
93 |
+
|
94 |
+
self.scale = s
|
95 |
+
|
96 |
+
print('[gconv]', order, 'order with dims=', self.dims, 'scale=%.4f'%self.scale)
|
97 |
+
|
98 |
+
|
99 |
+
def forward(self, x, mask=None, dummy=False):
|
100 |
+
B, C, H, W = x.shape
|
101 |
+
|
102 |
+
fused_x = self.proj_in(x)
|
103 |
+
pwa, abc = torch.split(fused_x, (self.dims[0], sum(self.dims)), dim=1)
|
104 |
+
|
105 |
+
dw_abc = self.dwconv(abc) * self.scale
|
106 |
+
|
107 |
+
dw_list = torch.split(dw_abc, self.dims, dim=1)
|
108 |
+
x = pwa * dw_list[0]
|
109 |
+
|
110 |
+
for i in range(self.order -1):
|
111 |
+
x = self.pws[i](x) * dw_list[i+1]
|
112 |
+
|
113 |
+
x = self.proj_out(x)
|
114 |
+
|
115 |
+
return x
|
116 |
+
|
117 |
+
class Block(nn.Module):
|
118 |
+
r""" HorNet block
|
119 |
+
"""
|
120 |
+
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, gnconv=gnconv):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.norm1 = LayerNorm(dim, eps=1e-6, data_format='channels_first')
|
124 |
+
self.gnconv = gnconv(dim) # depthwise conv
|
125 |
+
self.norm2 = LayerNorm(dim, eps=1e-6)
|
126 |
+
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
|
127 |
+
self.act = nn.GELU()
|
128 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
129 |
+
|
130 |
+
self.gamma1 = nn.Parameter(layer_scale_init_value * torch.ones(dim),
|
131 |
+
requires_grad=True) if layer_scale_init_value > 0 else None
|
132 |
+
|
133 |
+
self.gamma2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
|
134 |
+
requires_grad=True) if layer_scale_init_value > 0 else None
|
135 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
B, C, H, W = x.shape
|
139 |
+
if self.gamma1 is not None:
|
140 |
+
gamma1 = self.gamma1.view(C, 1, 1)
|
141 |
+
else:
|
142 |
+
gamma1 = 1
|
143 |
+
x = x + self.drop_path(gamma1 * self.gnconv(self.norm1(x)))
|
144 |
+
|
145 |
+
input = x
|
146 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
147 |
+
x = self.norm2(x)
|
148 |
+
x = self.pwconv1(x)
|
149 |
+
x = self.act(x)
|
150 |
+
x = self.pwconv2(x)
|
151 |
+
if self.gamma2 is not None:
|
152 |
+
x = self.gamma2 * x
|
153 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
154 |
+
|
155 |
+
x = input + self.drop_path(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
class HorNet(nn.Module):
|
160 |
+
r""" HorNet
|
161 |
+
A PyTorch impl of : `HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions`
|
162 |
+
|
163 |
+
Args:
|
164 |
+
in_chans (int): Number of input image channels. Default: 3
|
165 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
166 |
+
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
167 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
168 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
169 |
+
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
170 |
+
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
171 |
+
"""
|
172 |
+
def __init__(self, in_chans=3, num_classes=1000,
|
173 |
+
depths=[3, 3, 9, 3], base_dim=96, drop_path_rate=0.,
|
174 |
+
layer_scale_init_value=1e-6, head_init_scale=1.,
|
175 |
+
gnconv=gnconv, block=Block,
|
176 |
+
pretrained=None,
|
177 |
+
use_checkpoint=False,
|
178 |
+
):
|
179 |
+
super().__init__()
|
180 |
+
|
181 |
+
self.pretrained = pretrained
|
182 |
+
self.use_checkpoint = use_checkpoint
|
183 |
+
|
184 |
+
dims = [base_dim, base_dim*2, base_dim*4, base_dim*8]
|
185 |
+
|
186 |
+
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
|
187 |
+
stem = nn.Sequential(
|
188 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
189 |
+
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
|
190 |
+
)
|
191 |
+
self.downsample_layers.append(stem)
|
192 |
+
for i in range(3):
|
193 |
+
downsample_layer = nn.Sequential(
|
194 |
+
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
195 |
+
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
|
196 |
+
)
|
197 |
+
self.downsample_layers.append(downsample_layer)
|
198 |
+
|
199 |
+
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
|
200 |
+
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
201 |
+
|
202 |
+
|
203 |
+
if not isinstance(gnconv, list):
|
204 |
+
gnconv = [gnconv, gnconv, gnconv, gnconv]
|
205 |
+
else:
|
206 |
+
gnconv = gnconv
|
207 |
+
assert len(gnconv) == 4
|
208 |
+
|
209 |
+
if isinstance(gnconv[0], str):
|
210 |
+
print('[GConvNet]: convert str gconv to func')
|
211 |
+
gnconv = [eval(g) for g in gnconv]
|
212 |
+
|
213 |
+
if isinstance(block, str):
|
214 |
+
block = eval(block)
|
215 |
+
|
216 |
+
cur = 0
|
217 |
+
num_features = []
|
218 |
+
for i in range(4):
|
219 |
+
stage = nn.Sequential(
|
220 |
+
*[block(dim=dims[i], drop_path=dp_rates[cur + j],
|
221 |
+
layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]
|
222 |
+
)
|
223 |
+
self.stages.append(stage)
|
224 |
+
cur += depths[i]
|
225 |
+
num_features.append(dims[i])
|
226 |
+
self.num_features = num_features
|
227 |
+
|
228 |
+
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
|
229 |
+
for i_layer in range(4):
|
230 |
+
layer = norm_layer(dims[i_layer])
|
231 |
+
layer_name = f'norm{i_layer}'
|
232 |
+
self.add_module(layer_name, layer)
|
233 |
+
|
234 |
+
def init_weights(self):
|
235 |
+
"""Initialize the weights in backbone.
|
236 |
+
Args:
|
237 |
+
pretrained (str, optional): Path to pre-trained weights.
|
238 |
+
Defaults to None.
|
239 |
+
"""
|
240 |
+
#pretrained = self.pretrained
|
241 |
+
|
242 |
+
def _init_weights(m):
|
243 |
+
if isinstance(m, nn.Linear):
|
244 |
+
trunc_normal_(m.weight, std=.02)
|
245 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
246 |
+
nn.init.constant_(m.bias, 0)
|
247 |
+
elif isinstance(m, nn.LayerNorm):
|
248 |
+
nn.init.constant_(m.bias, 0)
|
249 |
+
nn.init.constant_(m.weight, 1.0)
|
250 |
+
|
251 |
+
#if isinstance(pretrained, str):
|
252 |
+
# self.apply(_init_weights)
|
253 |
+
# logger = get_root_logger()
|
254 |
+
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
255 |
+
#elif pretrained is None:
|
256 |
+
# raise NotImplementedError()
|
257 |
+
self.apply(_init_weights)
|
258 |
+
#else:
|
259 |
+
# raise TypeError('pretrained must be a str or None')
|
260 |
+
|
261 |
+
def forward_features(self, x):
|
262 |
+
outs = dict()
|
263 |
+
for i in range(4):
|
264 |
+
x = self.downsample_layers[i](x)
|
265 |
+
if self.use_checkpoint:
|
266 |
+
x = checkpoint.checkpoint_sequential(self.stages[i], len(self.stages[i]), x)
|
267 |
+
else:
|
268 |
+
x = self.stages[i](x)
|
269 |
+
norm_layer = getattr(self, f'norm{i}')
|
270 |
+
x_out = norm_layer(x)
|
271 |
+
outs["res%i"% (i+2)] = x_out
|
272 |
+
return outs #tuple(outs)
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
x = self.forward_features(x)
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class LayerNorm(nn.Module):
|
280 |
+
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
281 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
282 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
283 |
+
with shape (batch_size, channels, height, width).
|
284 |
+
"""
|
285 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
286 |
+
super().__init__()
|
287 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
288 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
289 |
+
self.eps = eps
|
290 |
+
self.data_format = data_format
|
291 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
292 |
+
raise NotImplementedError
|
293 |
+
self.normalized_shape = (normalized_shape, )
|
294 |
+
|
295 |
+
def forward(self, x):
|
296 |
+
if self.data_format == "channels_last":
|
297 |
+
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
298 |
+
elif self.data_format == "channels_first":
|
299 |
+
u = x.mean(1, keepdim=True)
|
300 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
301 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
302 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
303 |
+
return x
|
304 |
+
|
305 |
+
@BACKBONE_REGISTRY.register()
|
306 |
+
class D2HorNet(HorNet, Backbone):
|
307 |
+
def __init__(self, cfg, input_shape):
|
308 |
+
|
309 |
+
depths=cfg.MODEL.HORNET.DEPTHS
|
310 |
+
base_dim=cfg.MODEL.HORNET.BASE_DIM
|
311 |
+
gnconv=cfg.MODEL.HORNET.GCONV
|
312 |
+
drop_path_rate=cfg.MODEL.HORNET.DROP_PATH_RATE
|
313 |
+
|
314 |
+
super().__init__(
|
315 |
+
depths=depths,
|
316 |
+
base_dim=base_dim,
|
317 |
+
gnconv=gnconv,
|
318 |
+
drop_path_rate=drop_path_rate,
|
319 |
+
)
|
320 |
+
|
321 |
+
self._out_features = cfg.MODEL.HORNET.OUT_FEATURES
|
322 |
+
|
323 |
+
self._out_feature_strides = {
|
324 |
+
"res2": 4,
|
325 |
+
"res3": 8,
|
326 |
+
"res4": 16,
|
327 |
+
"res5": 32,
|
328 |
+
}
|
329 |
+
self._out_feature_channels = {
|
330 |
+
"res2": self.num_features[0],
|
331 |
+
"res3": self.num_features[1],
|
332 |
+
"res4": self.num_features[2],
|
333 |
+
"res5": self.num_features[3],
|
334 |
+
}
|
335 |
+
|
336 |
+
def forward(self, x):
|
337 |
+
"""
|
338 |
+
Args:
|
339 |
+
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
|
340 |
+
Returns:
|
341 |
+
dict[str->Tensor]: names and the corresponding features
|
342 |
+
"""
|
343 |
+
assert (
|
344 |
+
x.dim() == 4
|
345 |
+
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
|
346 |
+
outputs = {}
|
347 |
+
y = super().forward(x)
|
348 |
+
for k in y.keys():
|
349 |
+
if k in self._out_features:
|
350 |
+
outputs[k] = y[k]
|
351 |
+
return outputs
|
352 |
+
|
353 |
+
def output_shape(self):
|
354 |
+
return {
|
355 |
+
name: ShapeSpec(
|
356 |
+
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
|
357 |
+
)
|
358 |
+
for name in self._out_features
|
359 |
+
}
|
360 |
+
|
361 |
+
@property
|
362 |
+
def size_divisibility(self):
|
363 |
+
return 32
|
annotator/entityseg/mask2former/modeling/backbone/swin.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
9 |
+
# Modified by Bowen Cheng from https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation/blob/main/mmseg/models/backbones/swin_transformer.py
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.utils.checkpoint as checkpoint
|
16 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
17 |
+
|
18 |
+
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
|
19 |
+
|
20 |
+
|
21 |
+
class Mlp(nn.Module):
|
22 |
+
"""Multilayer perceptron."""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
def window_partition(x, window_size):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x: (B, H, W, C)
|
48 |
+
window_size (int): window size
|
49 |
+
Returns:
|
50 |
+
windows: (num_windows*B, window_size, window_size, C)
|
51 |
+
"""
|
52 |
+
B, H, W, C = x.shape
|
53 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
54 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
55 |
+
return windows
|
56 |
+
|
57 |
+
|
58 |
+
def window_reverse(windows, window_size, H, W):
|
59 |
+
"""
|
60 |
+
Args:
|
61 |
+
windows: (num_windows*B, window_size, window_size, C)
|
62 |
+
window_size (int): Window size
|
63 |
+
H (int): Height of image
|
64 |
+
W (int): Width of image
|
65 |
+
Returns:
|
66 |
+
x: (B, H, W, C)
|
67 |
+
"""
|
68 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
69 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
70 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class WindowAttention(nn.Module):
|
75 |
+
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
76 |
+
It supports both of shifted and non-shifted window.
|
77 |
+
Args:
|
78 |
+
dim (int): Number of input channels.
|
79 |
+
window_size (tuple[int]): The height and width of the window.
|
80 |
+
num_heads (int): Number of attention heads.
|
81 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
82 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
83 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
84 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
dim,
|
90 |
+
window_size,
|
91 |
+
num_heads,
|
92 |
+
qkv_bias=True,
|
93 |
+
qk_scale=None,
|
94 |
+
attn_drop=0.0,
|
95 |
+
proj_drop=0.0,
|
96 |
+
):
|
97 |
+
|
98 |
+
super().__init__()
|
99 |
+
self.dim = dim
|
100 |
+
self.window_size = window_size # Wh, Ww
|
101 |
+
self.num_heads = num_heads
|
102 |
+
head_dim = dim // num_heads
|
103 |
+
self.scale = qk_scale or head_dim ** -0.5
|
104 |
+
|
105 |
+
# define a parameter table of relative position bias
|
106 |
+
self.relative_position_bias_table = nn.Parameter(
|
107 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
108 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
109 |
+
|
110 |
+
# get pair-wise relative position index for each token inside the window
|
111 |
+
coords_h = torch.arange(self.window_size[0])
|
112 |
+
coords_w = torch.arange(self.window_size[1])
|
113 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
114 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
115 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
116 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
117 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
118 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
119 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
120 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
121 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
122 |
+
|
123 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
124 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
125 |
+
self.proj = nn.Linear(dim, dim)
|
126 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
127 |
+
|
128 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
129 |
+
self.softmax = nn.Softmax(dim=-1)
|
130 |
+
|
131 |
+
def forward(self, x, mask=None):
|
132 |
+
"""Forward function.
|
133 |
+
Args:
|
134 |
+
x: input features with shape of (num_windows*B, N, C)
|
135 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
136 |
+
"""
|
137 |
+
B_, N, C = x.shape
|
138 |
+
qkv = (
|
139 |
+
self.qkv(x)
|
140 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
141 |
+
.permute(2, 0, 3, 1, 4)
|
142 |
+
)
|
143 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
144 |
+
|
145 |
+
q = q * self.scale
|
146 |
+
attn = q @ k.transpose(-2, -1)
|
147 |
+
|
148 |
+
relative_position_bias = self.relative_position_bias_table[
|
149 |
+
self.relative_position_index.view(-1)
|
150 |
+
].view(
|
151 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
152 |
+
) # Wh*Ww,Wh*Ww,nH
|
153 |
+
relative_position_bias = relative_position_bias.permute(
|
154 |
+
2, 0, 1
|
155 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
156 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
157 |
+
|
158 |
+
if mask is not None:
|
159 |
+
nW = mask.shape[0]
|
160 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
161 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
162 |
+
attn = self.softmax(attn)
|
163 |
+
else:
|
164 |
+
attn = self.softmax(attn)
|
165 |
+
|
166 |
+
attn = self.attn_drop(attn)
|
167 |
+
|
168 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
169 |
+
x = self.proj(x)
|
170 |
+
x = self.proj_drop(x)
|
171 |
+
return x
|
172 |
+
|
173 |
+
|
174 |
+
class SwinTransformerBlock(nn.Module):
|
175 |
+
"""Swin Transformer Block.
|
176 |
+
Args:
|
177 |
+
dim (int): Number of input channels.
|
178 |
+
num_heads (int): Number of attention heads.
|
179 |
+
window_size (int): Window size.
|
180 |
+
shift_size (int): Shift size for SW-MSA.
|
181 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
182 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
183 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
184 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
185 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
186 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
187 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
188 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
dim,
|
194 |
+
num_heads,
|
195 |
+
window_size=7,
|
196 |
+
shift_size=0,
|
197 |
+
mlp_ratio=4.0,
|
198 |
+
qkv_bias=True,
|
199 |
+
qk_scale=None,
|
200 |
+
drop=0.0,
|
201 |
+
attn_drop=0.0,
|
202 |
+
drop_path=0.0,
|
203 |
+
act_layer=nn.GELU,
|
204 |
+
norm_layer=nn.LayerNorm,
|
205 |
+
):
|
206 |
+
super().__init__()
|
207 |
+
self.dim = dim
|
208 |
+
self.num_heads = num_heads
|
209 |
+
self.window_size = window_size
|
210 |
+
self.shift_size = shift_size
|
211 |
+
self.mlp_ratio = mlp_ratio
|
212 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
213 |
+
|
214 |
+
self.norm1 = norm_layer(dim)
|
215 |
+
self.attn = WindowAttention(
|
216 |
+
dim,
|
217 |
+
window_size=to_2tuple(self.window_size),
|
218 |
+
num_heads=num_heads,
|
219 |
+
qkv_bias=qkv_bias,
|
220 |
+
qk_scale=qk_scale,
|
221 |
+
attn_drop=attn_drop,
|
222 |
+
proj_drop=drop,
|
223 |
+
)
|
224 |
+
|
225 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
226 |
+
self.norm2 = norm_layer(dim)
|
227 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
228 |
+
self.mlp = Mlp(
|
229 |
+
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
|
230 |
+
)
|
231 |
+
|
232 |
+
self.H = None
|
233 |
+
self.W = None
|
234 |
+
|
235 |
+
def forward(self, x, mask_matrix):
|
236 |
+
"""Forward function.
|
237 |
+
Args:
|
238 |
+
x: Input feature, tensor size (B, H*W, C).
|
239 |
+
H, W: Spatial resolution of the input feature.
|
240 |
+
mask_matrix: Attention mask for cyclic shift.
|
241 |
+
"""
|
242 |
+
B, L, C = x.shape
|
243 |
+
H, W = self.H, self.W
|
244 |
+
assert L == H * W, "input feature has wrong size"
|
245 |
+
|
246 |
+
shortcut = x
|
247 |
+
x = self.norm1(x)
|
248 |
+
x = x.view(B, H, W, C)
|
249 |
+
|
250 |
+
# pad feature maps to multiples of window size
|
251 |
+
pad_l = pad_t = 0
|
252 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
253 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
254 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
255 |
+
_, Hp, Wp, _ = x.shape
|
256 |
+
|
257 |
+
# cyclic shift
|
258 |
+
if self.shift_size > 0:
|
259 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
260 |
+
attn_mask = mask_matrix
|
261 |
+
else:
|
262 |
+
shifted_x = x
|
263 |
+
attn_mask = None
|
264 |
+
|
265 |
+
# partition windows
|
266 |
+
x_windows = window_partition(
|
267 |
+
shifted_x, self.window_size
|
268 |
+
) # nW*B, window_size, window_size, C
|
269 |
+
x_windows = x_windows.view(
|
270 |
+
-1, self.window_size * self.window_size, C
|
271 |
+
) # nW*B, window_size*window_size, C
|
272 |
+
|
273 |
+
# W-MSA/SW-MSA
|
274 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
275 |
+
|
276 |
+
# merge windows
|
277 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
278 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
279 |
+
|
280 |
+
# reverse cyclic shift
|
281 |
+
if self.shift_size > 0:
|
282 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
283 |
+
else:
|
284 |
+
x = shifted_x
|
285 |
+
|
286 |
+
if pad_r > 0 or pad_b > 0:
|
287 |
+
x = x[:, :H, :W, :].contiguous()
|
288 |
+
|
289 |
+
x = x.view(B, H * W, C)
|
290 |
+
|
291 |
+
# FFN
|
292 |
+
x = shortcut + self.drop_path(x)
|
293 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
294 |
+
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class PatchMerging(nn.Module):
|
299 |
+
"""Patch Merging Layer
|
300 |
+
Args:
|
301 |
+
dim (int): Number of input channels.
|
302 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
306 |
+
super().__init__()
|
307 |
+
self.dim = dim
|
308 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
309 |
+
self.norm = norm_layer(4 * dim)
|
310 |
+
|
311 |
+
def forward(self, x, H, W):
|
312 |
+
"""Forward function.
|
313 |
+
Args:
|
314 |
+
x: Input feature, tensor size (B, H*W, C).
|
315 |
+
H, W: Spatial resolution of the input feature.
|
316 |
+
"""
|
317 |
+
B, L, C = x.shape
|
318 |
+
assert L == H * W, "input feature has wrong size"
|
319 |
+
|
320 |
+
x = x.view(B, H, W, C)
|
321 |
+
|
322 |
+
# padding
|
323 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
324 |
+
if pad_input:
|
325 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
326 |
+
|
327 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
328 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
329 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
330 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
331 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
332 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
333 |
+
|
334 |
+
x = self.norm(x)
|
335 |
+
x = self.reduction(x)
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
|
340 |
+
class BasicLayer(nn.Module):
|
341 |
+
"""A basic Swin Transformer layer for one stage.
|
342 |
+
Args:
|
343 |
+
dim (int): Number of feature channels
|
344 |
+
depth (int): Depths of this stage.
|
345 |
+
num_heads (int): Number of attention head.
|
346 |
+
window_size (int): Local window size. Default: 7.
|
347 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
348 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
349 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
350 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
351 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
352 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
353 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
354 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
355 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
356 |
+
"""
|
357 |
+
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
dim,
|
361 |
+
depth,
|
362 |
+
num_heads,
|
363 |
+
window_size=7,
|
364 |
+
mlp_ratio=4.0,
|
365 |
+
qkv_bias=True,
|
366 |
+
qk_scale=None,
|
367 |
+
drop=0.0,
|
368 |
+
attn_drop=0.0,
|
369 |
+
drop_path=0.0,
|
370 |
+
norm_layer=nn.LayerNorm,
|
371 |
+
downsample=None,
|
372 |
+
use_checkpoint=False,
|
373 |
+
):
|
374 |
+
super().__init__()
|
375 |
+
self.window_size = window_size
|
376 |
+
self.shift_size = window_size // 2
|
377 |
+
self.depth = depth
|
378 |
+
self.use_checkpoint = use_checkpoint
|
379 |
+
|
380 |
+
# build blocks
|
381 |
+
self.blocks = nn.ModuleList(
|
382 |
+
[
|
383 |
+
SwinTransformerBlock(
|
384 |
+
dim=dim,
|
385 |
+
num_heads=num_heads,
|
386 |
+
window_size=window_size,
|
387 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
388 |
+
mlp_ratio=mlp_ratio,
|
389 |
+
qkv_bias=qkv_bias,
|
390 |
+
qk_scale=qk_scale,
|
391 |
+
drop=drop,
|
392 |
+
attn_drop=attn_drop,
|
393 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
394 |
+
norm_layer=norm_layer,
|
395 |
+
)
|
396 |
+
for i in range(depth)
|
397 |
+
]
|
398 |
+
)
|
399 |
+
|
400 |
+
# patch merging layer
|
401 |
+
if downsample is not None:
|
402 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
403 |
+
else:
|
404 |
+
self.downsample = None
|
405 |
+
|
406 |
+
def forward(self, x, H, W):
|
407 |
+
"""Forward function.
|
408 |
+
Args:
|
409 |
+
x: Input feature, tensor size (B, H*W, C).
|
410 |
+
H, W: Spatial resolution of the input feature.
|
411 |
+
"""
|
412 |
+
|
413 |
+
# calculate attention mask for SW-MSA
|
414 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
415 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
416 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
417 |
+
h_slices = (
|
418 |
+
slice(0, -self.window_size),
|
419 |
+
slice(-self.window_size, -self.shift_size),
|
420 |
+
slice(-self.shift_size, None),
|
421 |
+
)
|
422 |
+
w_slices = (
|
423 |
+
slice(0, -self.window_size),
|
424 |
+
slice(-self.window_size, -self.shift_size),
|
425 |
+
slice(-self.shift_size, None),
|
426 |
+
)
|
427 |
+
cnt = 0
|
428 |
+
for h in h_slices:
|
429 |
+
for w in w_slices:
|
430 |
+
img_mask[:, h, w, :] = cnt
|
431 |
+
cnt += 1
|
432 |
+
|
433 |
+
mask_windows = window_partition(
|
434 |
+
img_mask, self.window_size
|
435 |
+
) # nW, window_size, window_size, 1
|
436 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
437 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
438 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
439 |
+
attn_mask == 0, float(0.0)
|
440 |
+
)
|
441 |
+
|
442 |
+
for blk in self.blocks:
|
443 |
+
blk.H, blk.W = H, W
|
444 |
+
if self.use_checkpoint:
|
445 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
446 |
+
else:
|
447 |
+
x = blk(x, attn_mask)
|
448 |
+
if self.downsample is not None:
|
449 |
+
x_down = self.downsample(x, H, W)
|
450 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
451 |
+
return x, H, W, x_down, Wh, Ww
|
452 |
+
else:
|
453 |
+
return x, H, W, x, H, W
|
454 |
+
|
455 |
+
|
456 |
+
class PatchEmbed(nn.Module):
|
457 |
+
"""Image to Patch Embedding
|
458 |
+
Args:
|
459 |
+
patch_size (int): Patch token size. Default: 4.
|
460 |
+
in_chans (int): Number of input image channels. Default: 3.
|
461 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
462 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
463 |
+
"""
|
464 |
+
|
465 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
466 |
+
super().__init__()
|
467 |
+
patch_size = to_2tuple(patch_size)
|
468 |
+
self.patch_size = patch_size
|
469 |
+
|
470 |
+
self.in_chans = in_chans
|
471 |
+
self.embed_dim = embed_dim
|
472 |
+
|
473 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
474 |
+
if norm_layer is not None:
|
475 |
+
self.norm = norm_layer(embed_dim)
|
476 |
+
else:
|
477 |
+
self.norm = None
|
478 |
+
|
479 |
+
def forward(self, x):
|
480 |
+
"""Forward function."""
|
481 |
+
# padding
|
482 |
+
_, _, H, W = x.size()
|
483 |
+
if W % self.patch_size[1] != 0:
|
484 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
485 |
+
if H % self.patch_size[0] != 0:
|
486 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
487 |
+
|
488 |
+
x = self.proj(x) # B C Wh Ww
|
489 |
+
if self.norm is not None:
|
490 |
+
Wh, Ww = x.size(2), x.size(3)
|
491 |
+
x = x.flatten(2).transpose(1, 2)
|
492 |
+
x = self.norm(x)
|
493 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
494 |
+
|
495 |
+
return x
|
496 |
+
|
497 |
+
|
498 |
+
class SwinTransformer(nn.Module):
|
499 |
+
"""Swin Transformer backbone.
|
500 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
501 |
+
https://arxiv.org/pdf/2103.14030
|
502 |
+
Args:
|
503 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
504 |
+
used in absolute postion embedding. Default 224.
|
505 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
506 |
+
in_chans (int): Number of input image channels. Default: 3.
|
507 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
508 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
509 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
510 |
+
window_size (int): Window size. Default: 7.
|
511 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
512 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
513 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
514 |
+
drop_rate (float): Dropout rate.
|
515 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
516 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
517 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
518 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
519 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
520 |
+
out_indices (Sequence[int]): Output from which stages.
|
521 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
522 |
+
-1 means not freezing any parameters.
|
523 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
524 |
+
"""
|
525 |
+
|
526 |
+
def __init__(
|
527 |
+
self,
|
528 |
+
pretrain_img_size=224,
|
529 |
+
patch_size=4,
|
530 |
+
in_chans=3,
|
531 |
+
embed_dim=96,
|
532 |
+
depths=[2, 2, 6, 2],
|
533 |
+
num_heads=[3, 6, 12, 24],
|
534 |
+
window_size=7,
|
535 |
+
mlp_ratio=4.0,
|
536 |
+
qkv_bias=True,
|
537 |
+
qk_scale=None,
|
538 |
+
drop_rate=0.0,
|
539 |
+
attn_drop_rate=0.0,
|
540 |
+
drop_path_rate=0.2,
|
541 |
+
norm_layer=nn.LayerNorm,
|
542 |
+
ape=False,
|
543 |
+
patch_norm=True,
|
544 |
+
out_indices=(0, 1, 2, 3),
|
545 |
+
frozen_stages=-1,
|
546 |
+
use_checkpoint=False,
|
547 |
+
):
|
548 |
+
super().__init__()
|
549 |
+
|
550 |
+
self.pretrain_img_size = pretrain_img_size
|
551 |
+
self.num_layers = len(depths)
|
552 |
+
self.embed_dim = embed_dim
|
553 |
+
self.ape = ape
|
554 |
+
self.patch_norm = patch_norm
|
555 |
+
self.out_indices = out_indices
|
556 |
+
self.frozen_stages = frozen_stages
|
557 |
+
|
558 |
+
# split image into non-overlapping patches
|
559 |
+
self.patch_embed = PatchEmbed(
|
560 |
+
patch_size=patch_size,
|
561 |
+
in_chans=in_chans,
|
562 |
+
embed_dim=embed_dim,
|
563 |
+
norm_layer=norm_layer if self.patch_norm else None,
|
564 |
+
)
|
565 |
+
|
566 |
+
# absolute position embedding
|
567 |
+
if self.ape:
|
568 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
569 |
+
patch_size = to_2tuple(patch_size)
|
570 |
+
patches_resolution = [
|
571 |
+
pretrain_img_size[0] // patch_size[0],
|
572 |
+
pretrain_img_size[1] // patch_size[1],
|
573 |
+
]
|
574 |
+
|
575 |
+
self.absolute_pos_embed = nn.Parameter(
|
576 |
+
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
577 |
+
)
|
578 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
579 |
+
|
580 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
581 |
+
|
582 |
+
# stochastic depth
|
583 |
+
dpr = [
|
584 |
+
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
585 |
+
] # stochastic depth decay rule
|
586 |
+
|
587 |
+
# build layers
|
588 |
+
self.layers = nn.ModuleList()
|
589 |
+
for i_layer in range(self.num_layers):
|
590 |
+
layer = BasicLayer(
|
591 |
+
dim=int(embed_dim * 2 ** i_layer),
|
592 |
+
depth=depths[i_layer],
|
593 |
+
num_heads=num_heads[i_layer],
|
594 |
+
window_size=window_size,
|
595 |
+
mlp_ratio=mlp_ratio,
|
596 |
+
qkv_bias=qkv_bias,
|
597 |
+
qk_scale=qk_scale,
|
598 |
+
drop=drop_rate,
|
599 |
+
attn_drop=attn_drop_rate,
|
600 |
+
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
601 |
+
norm_layer=norm_layer,
|
602 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
603 |
+
use_checkpoint=use_checkpoint,
|
604 |
+
)
|
605 |
+
self.layers.append(layer)
|
606 |
+
|
607 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
608 |
+
self.num_features = num_features
|
609 |
+
|
610 |
+
# add a norm layer for each output
|
611 |
+
for i_layer in out_indices:
|
612 |
+
layer = norm_layer(num_features[i_layer])
|
613 |
+
layer_name = f"norm{i_layer}"
|
614 |
+
self.add_module(layer_name, layer)
|
615 |
+
|
616 |
+
self._freeze_stages()
|
617 |
+
|
618 |
+
def _freeze_stages(self):
|
619 |
+
if self.frozen_stages >= 0:
|
620 |
+
self.patch_embed.eval()
|
621 |
+
for param in self.patch_embed.parameters():
|
622 |
+
param.requires_grad = False
|
623 |
+
|
624 |
+
if self.frozen_stages >= 1 and self.ape:
|
625 |
+
self.absolute_pos_embed.requires_grad = False
|
626 |
+
|
627 |
+
if self.frozen_stages >= 2:
|
628 |
+
self.pos_drop.eval()
|
629 |
+
for i in range(0, self.frozen_stages - 1):
|
630 |
+
m = self.layers[i]
|
631 |
+
m.eval()
|
632 |
+
for param in m.parameters():
|
633 |
+
param.requires_grad = False
|
634 |
+
|
635 |
+
def init_weights(self, pretrained=None):
|
636 |
+
"""Initialize the weights in backbone.
|
637 |
+
Args:
|
638 |
+
pretrained (str, optional): Path to pre-trained weights.
|
639 |
+
Defaults to None.
|
640 |
+
"""
|
641 |
+
|
642 |
+
def _init_weights(m):
|
643 |
+
if isinstance(m, nn.Linear):
|
644 |
+
trunc_normal_(m.weight, std=0.02)
|
645 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
646 |
+
nn.init.constant_(m.bias, 0)
|
647 |
+
elif isinstance(m, nn.LayerNorm):
|
648 |
+
nn.init.constant_(m.bias, 0)
|
649 |
+
nn.init.constant_(m.weight, 1.0)
|
650 |
+
|
651 |
+
def forward(self, x):
|
652 |
+
"""Forward function."""
|
653 |
+
x = self.patch_embed(x)
|
654 |
+
|
655 |
+
Wh, Ww = x.size(2), x.size(3)
|
656 |
+
if self.ape:
|
657 |
+
# interpolate the position embedding to the corresponding size
|
658 |
+
absolute_pos_embed = F.interpolate(
|
659 |
+
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
660 |
+
)
|
661 |
+
x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
|
662 |
+
else:
|
663 |
+
x = x.flatten(2).transpose(1, 2)
|
664 |
+
x = self.pos_drop(x)
|
665 |
+
|
666 |
+
outs = {}
|
667 |
+
for i in range(self.num_layers):
|
668 |
+
layer = self.layers[i]
|
669 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
670 |
+
|
671 |
+
if i in self.out_indices:
|
672 |
+
norm_layer = getattr(self, f"norm{i}")
|
673 |
+
x_out = norm_layer(x_out)
|
674 |
+
|
675 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
676 |
+
outs["res{}".format(i + 2)] = out
|
677 |
+
|
678 |
+
return outs
|
679 |
+
|
680 |
+
def train(self, mode=True):
|
681 |
+
"""Convert the model into training mode while keep layers freezed."""
|
682 |
+
super(SwinTransformer, self).train(mode)
|
683 |
+
self._freeze_stages()
|
684 |
+
|
685 |
+
|
686 |
+
@BACKBONE_REGISTRY.register()
|
687 |
+
class D2SwinTransformer(SwinTransformer, Backbone):
|
688 |
+
def __init__(self, cfg, input_shape):
|
689 |
+
|
690 |
+
pretrain_img_size = cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE
|
691 |
+
patch_size = cfg.MODEL.SWIN.PATCH_SIZE
|
692 |
+
in_chans = 3
|
693 |
+
embed_dim = cfg.MODEL.SWIN.EMBED_DIM
|
694 |
+
depths = cfg.MODEL.SWIN.DEPTHS
|
695 |
+
num_heads = cfg.MODEL.SWIN.NUM_HEADS
|
696 |
+
window_size = cfg.MODEL.SWIN.WINDOW_SIZE
|
697 |
+
mlp_ratio = cfg.MODEL.SWIN.MLP_RATIO
|
698 |
+
qkv_bias = cfg.MODEL.SWIN.QKV_BIAS
|
699 |
+
qk_scale = cfg.MODEL.SWIN.QK_SCALE
|
700 |
+
drop_rate = cfg.MODEL.SWIN.DROP_RATE
|
701 |
+
attn_drop_rate = cfg.MODEL.SWIN.ATTN_DROP_RATE
|
702 |
+
drop_path_rate = cfg.MODEL.SWIN.DROP_PATH_RATE
|
703 |
+
norm_layer = nn.LayerNorm
|
704 |
+
ape = cfg.MODEL.SWIN.APE
|
705 |
+
patch_norm = cfg.MODEL.SWIN.PATCH_NORM
|
706 |
+
use_checkpoint = cfg.MODEL.SWIN.USE_CHECKPOINT
|
707 |
+
|
708 |
+
super().__init__(
|
709 |
+
pretrain_img_size,
|
710 |
+
patch_size,
|
711 |
+
in_chans,
|
712 |
+
embed_dim,
|
713 |
+
depths,
|
714 |
+
num_heads,
|
715 |
+
window_size,
|
716 |
+
mlp_ratio,
|
717 |
+
qkv_bias,
|
718 |
+
qk_scale,
|
719 |
+
drop_rate,
|
720 |
+
attn_drop_rate,
|
721 |
+
drop_path_rate,
|
722 |
+
norm_layer,
|
723 |
+
ape,
|
724 |
+
patch_norm,
|
725 |
+
use_checkpoint=use_checkpoint,
|
726 |
+
)
|
727 |
+
|
728 |
+
self._out_features = cfg.MODEL.SWIN.OUT_FEATURES
|
729 |
+
|
730 |
+
self._out_feature_strides = {
|
731 |
+
"res2": 4,
|
732 |
+
"res3": 8,
|
733 |
+
"res4": 16,
|
734 |
+
"res5": 32,
|
735 |
+
}
|
736 |
+
self._out_feature_channels = {
|
737 |
+
"res2": self.num_features[0],
|
738 |
+
"res3": self.num_features[1],
|
739 |
+
"res4": self.num_features[2],
|
740 |
+
"res5": self.num_features[3],
|
741 |
+
}
|
742 |
+
|
743 |
+
def forward(self, x):
|
744 |
+
"""
|
745 |
+
Args:
|
746 |
+
x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.
|
747 |
+
Returns:
|
748 |
+
dict[str->Tensor]: names and the corresponding features
|
749 |
+
"""
|
750 |
+
assert (
|
751 |
+
x.dim() == 4
|
752 |
+
), f"SwinTransformer takes an input of shape (N, C, H, W). Got {x.shape} instead!"
|
753 |
+
outputs = {}
|
754 |
+
y = super().forward(x)
|
755 |
+
for k in y.keys():
|
756 |
+
if k in self._out_features:
|
757 |
+
outputs[k] = y[k]
|
758 |
+
return outputs
|
759 |
+
|
760 |
+
def output_shape(self):
|
761 |
+
return {
|
762 |
+
name: ShapeSpec(
|
763 |
+
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
|
764 |
+
)
|
765 |
+
for name in self._out_features
|
766 |
+
}
|
767 |
+
|
768 |
+
@property
|
769 |
+
def size_divisibility(self):
|
770 |
+
return 32
|
annotator/entityseg/mask2former/modeling/criterion.py
ADDED
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
"""
|
4 |
+
MaskFormer criterion.
|
5 |
+
"""
|
6 |
+
import logging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from detectron2.utils.comm import get_world_size
|
13 |
+
from detectron2.projects.point_rend.point_features import (
|
14 |
+
get_uncertain_point_coords_with_randomness,
|
15 |
+
point_sample,
|
16 |
+
)
|
17 |
+
|
18 |
+
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list
|
19 |
+
|
20 |
+
|
21 |
+
def dice_loss(
|
22 |
+
inputs: torch.Tensor,
|
23 |
+
targets: torch.Tensor,
|
24 |
+
num_masks: float,
|
25 |
+
):
|
26 |
+
"""
|
27 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
28 |
+
Args:
|
29 |
+
inputs: A float tensor of arbitrary shape.
|
30 |
+
The predictions for each example.
|
31 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
32 |
+
classification label for each element in inputs
|
33 |
+
(0 for the negative class and 1 for the positive class).
|
34 |
+
"""
|
35 |
+
inputs = inputs.sigmoid()
|
36 |
+
inputs = inputs.flatten(1)
|
37 |
+
numerator = 2 * (inputs * targets).sum(-1)
|
38 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
39 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
40 |
+
return loss.sum() / num_masks
|
41 |
+
|
42 |
+
|
43 |
+
dice_loss_jit = torch.jit.script(
|
44 |
+
dice_loss
|
45 |
+
) # type: torch.jit.ScriptModule
|
46 |
+
|
47 |
+
|
48 |
+
def sigmoid_ce_loss(
|
49 |
+
inputs: torch.Tensor,
|
50 |
+
targets: torch.Tensor,
|
51 |
+
num_masks: float,
|
52 |
+
):
|
53 |
+
"""
|
54 |
+
Args:
|
55 |
+
inputs: A float tensor of arbitrary shape.
|
56 |
+
The predictions for each example.
|
57 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
58 |
+
classification label for each element in inputs
|
59 |
+
(0 for the negative class and 1 for the positive class).
|
60 |
+
Returns:
|
61 |
+
Loss tensor
|
62 |
+
"""
|
63 |
+
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
64 |
+
|
65 |
+
return loss.mean(1).sum() / num_masks
|
66 |
+
|
67 |
+
|
68 |
+
sigmoid_ce_loss_jit = torch.jit.script(
|
69 |
+
sigmoid_ce_loss
|
70 |
+
) # type: torch.jit.ScriptModule
|
71 |
+
|
72 |
+
|
73 |
+
def calculate_uncertainty(logits):
|
74 |
+
"""
|
75 |
+
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
|
76 |
+
foreground class in `classes`.
|
77 |
+
Args:
|
78 |
+
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
|
79 |
+
class-agnostic, where R is the total number of predicted masks in all images and C is
|
80 |
+
the number of foreground classes. The values are logits.
|
81 |
+
Returns:
|
82 |
+
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
|
83 |
+
the most uncertain locations having the highest uncertainty score.
|
84 |
+
"""
|
85 |
+
assert logits.shape[1] == 1
|
86 |
+
gt_class_logits = logits.clone()
|
87 |
+
return -(torch.abs(gt_class_logits))
|
88 |
+
|
89 |
+
|
90 |
+
class SetCriterion(nn.Module):
|
91 |
+
"""This class computes the loss for DETR.
|
92 |
+
The process happens in two steps:
|
93 |
+
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
94 |
+
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
|
98 |
+
num_points, oversample_ratio, importance_sample_ratio):
|
99 |
+
"""Create the criterion.
|
100 |
+
Parameters:
|
101 |
+
num_classes: number of object categories, omitting the special no-object category
|
102 |
+
matcher: module able to compute a matching between targets and proposals
|
103 |
+
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
104 |
+
eos_coef: relative classification weight applied to the no-object category
|
105 |
+
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
106 |
+
"""
|
107 |
+
super().__init__()
|
108 |
+
self.num_classes = num_classes
|
109 |
+
self.matcher = matcher
|
110 |
+
self.weight_dict = weight_dict
|
111 |
+
self.eos_coef = eos_coef
|
112 |
+
self.losses = losses
|
113 |
+
empty_weight = torch.ones(self.num_classes + 1)
|
114 |
+
empty_weight[-1] = self.eos_coef
|
115 |
+
self.register_buffer("empty_weight", empty_weight)
|
116 |
+
|
117 |
+
# pointwise mask loss parameters
|
118 |
+
self.num_points = num_points
|
119 |
+
self.oversample_ratio = oversample_ratio
|
120 |
+
self.importance_sample_ratio = importance_sample_ratio
|
121 |
+
|
122 |
+
def loss_labels(self, outputs, targets, indices, num_masks):
|
123 |
+
"""Classification loss (NLL)
|
124 |
+
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
125 |
+
"""
|
126 |
+
assert "pred_logits" in outputs
|
127 |
+
src_logits = outputs["pred_logits"].float()
|
128 |
+
|
129 |
+
idx = self._get_src_permutation_idx(indices)
|
130 |
+
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
131 |
+
target_classes = torch.full(
|
132 |
+
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
|
133 |
+
)
|
134 |
+
target_classes[idx] = target_classes_o
|
135 |
+
|
136 |
+
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
|
137 |
+
losses = {"loss_ce": loss_ce}
|
138 |
+
return losses
|
139 |
+
|
140 |
+
def loss_masks(self, outputs, targets, indices, num_masks):
|
141 |
+
"""Compute the losses related to the masks: the focal loss and the dice loss.
|
142 |
+
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
|
143 |
+
"""
|
144 |
+
assert "pred_masks" in outputs
|
145 |
+
|
146 |
+
src_idx = self._get_src_permutation_idx(indices)
|
147 |
+
tgt_idx = self._get_tgt_permutation_idx(indices)
|
148 |
+
src_masks = outputs["pred_masks"]
|
149 |
+
src_masks = src_masks[src_idx]
|
150 |
+
masks = [t["masks"] for t in targets]
|
151 |
+
# TODO use valid to mask invalid areas due to padding in loss
|
152 |
+
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
|
153 |
+
target_masks = target_masks.to(src_masks)
|
154 |
+
target_masks = target_masks[tgt_idx]
|
155 |
+
|
156 |
+
# No need to upsample predictions as we are using normalized coordinates :)
|
157 |
+
# N x 1 x H x W
|
158 |
+
src_masks = src_masks[:, None]
|
159 |
+
target_masks = target_masks[:, None]
|
160 |
+
|
161 |
+
with torch.no_grad():
|
162 |
+
# sample point_coords
|
163 |
+
point_coords = get_uncertain_point_coords_with_randomness(
|
164 |
+
src_masks,
|
165 |
+
lambda logits: calculate_uncertainty(logits),
|
166 |
+
self.num_points,
|
167 |
+
self.oversample_ratio,
|
168 |
+
self.importance_sample_ratio,
|
169 |
+
)
|
170 |
+
# get gt labels
|
171 |
+
point_labels = point_sample(
|
172 |
+
target_masks,
|
173 |
+
point_coords,
|
174 |
+
align_corners=False,
|
175 |
+
).squeeze(1)
|
176 |
+
|
177 |
+
point_logits = point_sample(
|
178 |
+
src_masks,
|
179 |
+
point_coords,
|
180 |
+
align_corners=False,
|
181 |
+
).squeeze(1)
|
182 |
+
|
183 |
+
losses = {
|
184 |
+
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
|
185 |
+
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
|
186 |
+
}
|
187 |
+
|
188 |
+
del src_masks
|
189 |
+
del target_masks
|
190 |
+
return losses
|
191 |
+
|
192 |
+
def _get_src_permutation_idx(self, indices):
|
193 |
+
# permute predictions following indices
|
194 |
+
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
195 |
+
src_idx = torch.cat([src for (src, _) in indices])
|
196 |
+
return batch_idx, src_idx
|
197 |
+
|
198 |
+
def _get_tgt_permutation_idx(self, indices):
|
199 |
+
# permute targets following indices
|
200 |
+
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
201 |
+
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
202 |
+
return batch_idx, tgt_idx
|
203 |
+
|
204 |
+
def get_loss(self, loss, outputs, targets, indices, num_masks):
|
205 |
+
loss_map = {
|
206 |
+
'labels': self.loss_labels,
|
207 |
+
'masks': self.loss_masks,
|
208 |
+
}
|
209 |
+
assert loss in loss_map, f"do you really want to compute {loss} loss?"
|
210 |
+
return loss_map[loss](outputs, targets, indices, num_masks)
|
211 |
+
|
212 |
+
def forward(self, outputs, targets):
|
213 |
+
"""This performs the loss computation.
|
214 |
+
Parameters:
|
215 |
+
outputs: dict of tensors, see the output specification of the model for the format
|
216 |
+
targets: list of dicts, such that len(targets) == batch_size.
|
217 |
+
The expected keys in each dict depends on the losses applied, see each loss' doc
|
218 |
+
"""
|
219 |
+
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
|
220 |
+
|
221 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
222 |
+
indices = self.matcher(outputs_without_aux, targets)
|
223 |
+
|
224 |
+
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
225 |
+
num_masks = sum(len(t["labels"]) for t in targets)
|
226 |
+
num_masks = torch.as_tensor(
|
227 |
+
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
|
228 |
+
)
|
229 |
+
if is_dist_avail_and_initialized():
|
230 |
+
torch.distributed.all_reduce(num_masks)
|
231 |
+
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
|
232 |
+
|
233 |
+
# Compute all the requested losses
|
234 |
+
losses = {}
|
235 |
+
for loss in self.losses:
|
236 |
+
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
|
237 |
+
|
238 |
+
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
239 |
+
if "aux_outputs" in outputs:
|
240 |
+
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
|
241 |
+
indices = self.matcher(aux_outputs, targets)
|
242 |
+
for loss in self.losses:
|
243 |
+
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
|
244 |
+
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
|
245 |
+
losses.update(l_dict)
|
246 |
+
|
247 |
+
return losses
|
248 |
+
|
249 |
+
def __repr__(self):
|
250 |
+
head = "Criterion " + self.__class__.__name__
|
251 |
+
body = [
|
252 |
+
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
|
253 |
+
"losses: {}".format(self.losses),
|
254 |
+
"weight_dict: {}".format(self.weight_dict),
|
255 |
+
"num_classes: {}".format(self.num_classes),
|
256 |
+
"eos_coef: {}".format(self.eos_coef),
|
257 |
+
"num_points: {}".format(self.num_points),
|
258 |
+
"oversample_ratio: {}".format(self.oversample_ratio),
|
259 |
+
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
|
260 |
+
]
|
261 |
+
_repr_indent = 4
|
262 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
263 |
+
return "\n".join(lines)
|
annotator/entityseg/mask2former/modeling/criterion_view.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
"""
|
4 |
+
MaskFormer criterion.
|
5 |
+
"""
|
6 |
+
import logging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from detectron2.utils.comm import get_world_size
|
13 |
+
from detectron2.projects.point_rend.point_features import (
|
14 |
+
get_uncertain_point_coords_with_randomness,
|
15 |
+
point_sample,
|
16 |
+
)
|
17 |
+
|
18 |
+
from mask2former.utils.misc import is_dist_avail_and_initialized
|
19 |
+
|
20 |
+
import pdb
|
21 |
+
|
22 |
+
|
23 |
+
def dice_loss(
|
24 |
+
inputs: torch.Tensor,
|
25 |
+
targets: torch.Tensor,
|
26 |
+
num_masks: float,
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
30 |
+
Args:
|
31 |
+
inputs: A float tensor of arbitrary shape.
|
32 |
+
The predictions for each example.
|
33 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
34 |
+
classification label for each element in inputs
|
35 |
+
(0 for the negative class and 1 for the positive class).
|
36 |
+
"""
|
37 |
+
inputs = inputs.sigmoid()
|
38 |
+
inputs = inputs.flatten(1)
|
39 |
+
numerator = 2 * (inputs * targets).sum(-1)
|
40 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
41 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
42 |
+
return loss.sum() / num_masks
|
43 |
+
|
44 |
+
|
45 |
+
dice_loss_jit = torch.jit.script(
|
46 |
+
dice_loss
|
47 |
+
) # type: torch.jit.ScriptModule
|
48 |
+
|
49 |
+
|
50 |
+
def sigmoid_ce_loss(
|
51 |
+
inputs: torch.Tensor,
|
52 |
+
targets: torch.Tensor,
|
53 |
+
num_masks: float,
|
54 |
+
):
|
55 |
+
"""
|
56 |
+
Args:
|
57 |
+
inputs: A float tensor of arbitrary shape.
|
58 |
+
The predictions for each example.
|
59 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
60 |
+
classification label for each element in inputs
|
61 |
+
(0 for the negative class and 1 for the positive class).
|
62 |
+
Returns:
|
63 |
+
Loss tensor
|
64 |
+
"""
|
65 |
+
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
66 |
+
|
67 |
+
return loss.mean(1).sum() / num_masks
|
68 |
+
|
69 |
+
|
70 |
+
sigmoid_ce_loss_jit = torch.jit.script(
|
71 |
+
sigmoid_ce_loss
|
72 |
+
) # type: torch.jit.ScriptModule
|
73 |
+
|
74 |
+
|
75 |
+
def calculate_uncertainty(logits):
|
76 |
+
"""
|
77 |
+
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
|
78 |
+
foreground class in `classes`.
|
79 |
+
Args:
|
80 |
+
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
|
81 |
+
class-agnostic, where R is the total number of predicted masks in all images and C is
|
82 |
+
the number of foreground classes. The values are logits.
|
83 |
+
Returns:
|
84 |
+
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
|
85 |
+
the most uncertain locations having the highest uncertainty score.
|
86 |
+
"""
|
87 |
+
assert logits.shape[1] == 1
|
88 |
+
gt_class_logits = logits.clone()
|
89 |
+
return -(torch.abs(gt_class_logits))
|
90 |
+
|
91 |
+
|
92 |
+
class ViewSetCriterion(nn.Module):
|
93 |
+
"""This class computes the loss for DETR.
|
94 |
+
The process happens in two steps:
|
95 |
+
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
|
96 |
+
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
|
100 |
+
num_points, oversample_ratio, importance_sample_ratio):
|
101 |
+
"""Create the criterion.
|
102 |
+
Parameters:
|
103 |
+
num_classes: number of object categories, omitting the special no-object category
|
104 |
+
matcher: module able to compute a matching between targets and proposals
|
105 |
+
weight_dict: dict containing as key the names of the losses and as values their relative weight.
|
106 |
+
eos_coef: relative classification weight applied to the no-object category
|
107 |
+
losses: list of all the losses to be applied. See get_loss for list of available losses.
|
108 |
+
"""
|
109 |
+
super().__init__()
|
110 |
+
self.num_classes = num_classes
|
111 |
+
self.matcher = matcher
|
112 |
+
self.weight_dict = weight_dict
|
113 |
+
self.eos_coef = eos_coef
|
114 |
+
self.losses = losses
|
115 |
+
empty_weight = torch.ones(self.num_classes + 1)
|
116 |
+
empty_weight[-1] = self.eos_coef
|
117 |
+
self.register_buffer("empty_weight", empty_weight)
|
118 |
+
|
119 |
+
# pointwise mask loss parameters
|
120 |
+
self.num_points = num_points
|
121 |
+
self.oversample_ratio = oversample_ratio
|
122 |
+
self.importance_sample_ratio = importance_sample_ratio
|
123 |
+
|
124 |
+
def loss_labels(self, outputs, targets, indices, num_masks):
|
125 |
+
"""Classification loss (NLL)
|
126 |
+
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
|
127 |
+
"""
|
128 |
+
assert "pred_logits" in outputs
|
129 |
+
src_logits = outputs["pred_logits"].float()
|
130 |
+
## src_logits: torch.Size([2, 100, 41])
|
131 |
+
|
132 |
+
idx = self._get_src_permutation_idx(indices)
|
133 |
+
## idx: (tensor([0, 0, 1, 1]), tensor([17, 84, 17, 76]))
|
134 |
+
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
|
135 |
+
### target_class_o: tensor([ 0, 26, 0, 11], device='cuda:0')
|
136 |
+
target_classes = torch.full(
|
137 |
+
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
|
138 |
+
)
|
139 |
+
## target_class: torch.Size([2, 100]), 全是40, background类
|
140 |
+
target_classes[idx] = target_classes_o
|
141 |
+
##
|
142 |
+
## src_logits: torch.Size([2, 41, 100])
|
143 |
+
## target_classes: torch.Size([2, 100])
|
144 |
+
## self.empty_weight: tensor([1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
|
145 |
+
##1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
|
146 |
+
##1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
|
147 |
+
##1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
|
148 |
+
##1.0000, 1.0000, 1.0000, 1.0000, 0.1000], device='cuda:0')
|
149 |
+
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
|
150 |
+
losses = {"loss_ce": loss_ce}
|
151 |
+
return losses
|
152 |
+
|
153 |
+
def loss_masks(self, outputs, targets, indices, num_masks):
|
154 |
+
"""Compute the losses related to the masks: the focal loss and the dice loss.
|
155 |
+
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
|
156 |
+
"""
|
157 |
+
assert "pred_masks" in outputs
|
158 |
+
|
159 |
+
src_idx = self._get_src_permutation_idx(indices)
|
160 |
+
### src_idx: (tensor([0, 0, 1, 1]), tensor([34, 95, 32, 65]))
|
161 |
+
src_masks = outputs["pred_masks"]
|
162 |
+
## src_masks: torch.Size([2, 100, 2, 120, 216])
|
163 |
+
src_masks = src_masks[src_idx]
|
164 |
+
## src_masks: torch.Size([4, 2, 120, 216])
|
165 |
+
|
166 |
+
# Modified to handle video
|
167 |
+
target_masks = torch.cat([t['masks'][i] for t, (_, i) in zip(targets, indices)]).to(src_masks)
|
168 |
+
### target_masks: torch.Size([4, 2, 480, 864])
|
169 |
+
|
170 |
+
# No need to upsample predictions as we are using normalized coordinates :)
|
171 |
+
# NT x 1 x H x W
|
172 |
+
src_masks = src_masks.flatten(0, 1)[:, None]
|
173 |
+
## src_masks: torch.Size([8, 1, 120, 216])
|
174 |
+
target_masks = target_masks.flatten(0, 1)[:, None]
|
175 |
+
## target_masks: torch.Size([8, 1, 480, 864])
|
176 |
+
|
177 |
+
with torch.no_grad():
|
178 |
+
# sample point_coords
|
179 |
+
point_coords = get_uncertain_point_coords_with_randomness(
|
180 |
+
src_masks,
|
181 |
+
lambda logits: calculate_uncertainty(logits),
|
182 |
+
self.num_points,
|
183 |
+
self.oversample_ratio,
|
184 |
+
self.importance_sample_ratio,
|
185 |
+
)
|
186 |
+
# get gt labels
|
187 |
+
point_labels = point_sample(
|
188 |
+
target_masks,
|
189 |
+
point_coords,
|
190 |
+
align_corners=False,
|
191 |
+
).squeeze(1)
|
192 |
+
|
193 |
+
point_logits = point_sample(
|
194 |
+
src_masks,
|
195 |
+
point_coords,
|
196 |
+
align_corners=False,
|
197 |
+
).squeeze(1)
|
198 |
+
|
199 |
+
losses = {
|
200 |
+
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
|
201 |
+
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
|
202 |
+
}
|
203 |
+
|
204 |
+
del src_masks
|
205 |
+
del target_masks
|
206 |
+
return losses
|
207 |
+
|
208 |
+
def _get_src_permutation_idx(self, indices):
|
209 |
+
# permute predictions following indices
|
210 |
+
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
|
211 |
+
src_idx = torch.cat([src for (src, _) in indices])
|
212 |
+
return batch_idx, src_idx
|
213 |
+
|
214 |
+
def _get_tgt_permutation_idx(self, indices):
|
215 |
+
# permute targets following indices
|
216 |
+
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
|
217 |
+
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
|
218 |
+
return batch_idx, tgt_idx
|
219 |
+
|
220 |
+
def get_loss(self, loss, outputs, targets, indices, num_masks):
|
221 |
+
loss_map = {
|
222 |
+
'labels': self.loss_labels,
|
223 |
+
'masks': self.loss_masks,
|
224 |
+
}
|
225 |
+
assert loss in loss_map, f"do you really want to compute {loss} loss?"
|
226 |
+
return loss_map[loss](outputs, targets, indices, num_masks)
|
227 |
+
|
228 |
+
def forward(self, outputs, targets, return_indices=False):
|
229 |
+
"""This performs the loss computation.
|
230 |
+
Parameters:
|
231 |
+
outputs: dict of tensors, see the output specification of the model for the format
|
232 |
+
targets: list of dicts, such that len(targets) == batch_size.
|
233 |
+
The expected keys in each dict depends on the losses applied, see each loss' doc
|
234 |
+
"""
|
235 |
+
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}
|
236 |
+
|
237 |
+
# Retrieve the matching between the outputs of the last layer and the targets
|
238 |
+
indices = self.matcher(outputs_without_aux, targets)
|
239 |
+
indices_l = []
|
240 |
+
indices_l.append(indices)
|
241 |
+
# pdb.set_trace()
|
242 |
+
|
243 |
+
# Compute the average number of target boxes accross all nodes, for normalization purposes
|
244 |
+
num_masks = sum(len(t["labels"]) for t in targets)
|
245 |
+
num_masks = torch.as_tensor(
|
246 |
+
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
|
247 |
+
)
|
248 |
+
if is_dist_avail_and_initialized():
|
249 |
+
torch.distributed.all_reduce(num_masks)
|
250 |
+
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()
|
251 |
+
|
252 |
+
# Compute all the requested losses
|
253 |
+
losses = {}
|
254 |
+
for loss in self.losses:
|
255 |
+
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))
|
256 |
+
|
257 |
+
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
|
258 |
+
if "aux_outputs" in outputs:
|
259 |
+
for i, aux_outputs in enumerate(outputs["aux_outputs"]):
|
260 |
+
indices = self.matcher(aux_outputs, targets)
|
261 |
+
indices_l.append(indices)
|
262 |
+
for loss in self.losses:
|
263 |
+
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
|
264 |
+
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
|
265 |
+
losses.update(l_dict)
|
266 |
+
indices_l.append(indices_l[0])
|
267 |
+
indices_l = indices_l[1:]
|
268 |
+
|
269 |
+
if return_indices:
|
270 |
+
return losses, indices_l
|
271 |
+
else:
|
272 |
+
return losses
|
273 |
+
|
274 |
+
def __repr__(self):
|
275 |
+
head = "Criterion " + self.__class__.__name__
|
276 |
+
body = [
|
277 |
+
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
|
278 |
+
"losses: {}".format(self.losses),
|
279 |
+
"weight_dict: {}".format(self.weight_dict),
|
280 |
+
"num_classes: {}".format(self.num_classes),
|
281 |
+
"eos_coef: {}".format(self.eos_coef),
|
282 |
+
"num_points: {}".format(self.num_points),
|
283 |
+
"oversample_ratio: {}".format(self.oversample_ratio),
|
284 |
+
"importance_sample_ratio: {}".format(self.importance_sample_ratio),
|
285 |
+
]
|
286 |
+
_repr_indent = 4
|
287 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
288 |
+
return "\n".join(lines)
|
annotator/entityseg/mask2former/modeling/matcher.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/matcher.py
|
3 |
+
"""
|
4 |
+
Modules to compute the matching cost and solve the corresponding LSAP.
|
5 |
+
"""
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from scipy.optimize import linear_sum_assignment
|
9 |
+
from torch import nn
|
10 |
+
from torch.cuda.amp import autocast
|
11 |
+
|
12 |
+
from detectron2.projects.point_rend.point_features import point_sample
|
13 |
+
|
14 |
+
|
15 |
+
def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
18 |
+
Args:
|
19 |
+
inputs: A float tensor of arbitrary shape.
|
20 |
+
The predictions for each example.
|
21 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
22 |
+
classification label for each element in inputs
|
23 |
+
(0 for the negative class and 1 for the positive class).
|
24 |
+
"""
|
25 |
+
inputs = inputs.sigmoid()
|
26 |
+
inputs = inputs.flatten(1)
|
27 |
+
numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets)
|
28 |
+
denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :]
|
29 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
30 |
+
return loss
|
31 |
+
|
32 |
+
|
33 |
+
batch_dice_loss_jit = torch.jit.script(
|
34 |
+
batch_dice_loss
|
35 |
+
) # type: torch.jit.ScriptModule
|
36 |
+
|
37 |
+
|
38 |
+
def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor):
|
39 |
+
"""
|
40 |
+
Args:
|
41 |
+
inputs: A float tensor of arbitrary shape.
|
42 |
+
The predictions for each example.
|
43 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
44 |
+
classification label for each element in inputs
|
45 |
+
(0 for the negative class and 1 for the positive class).
|
46 |
+
Returns:
|
47 |
+
Loss tensor
|
48 |
+
"""
|
49 |
+
hw = inputs.shape[1]
|
50 |
+
|
51 |
+
pos = F.binary_cross_entropy_with_logits(
|
52 |
+
inputs, torch.ones_like(inputs), reduction="none"
|
53 |
+
)
|
54 |
+
neg = F.binary_cross_entropy_with_logits(
|
55 |
+
inputs, torch.zeros_like(inputs), reduction="none"
|
56 |
+
)
|
57 |
+
|
58 |
+
loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum(
|
59 |
+
"nc,mc->nm", neg, (1 - targets)
|
60 |
+
)
|
61 |
+
|
62 |
+
return loss / hw
|
63 |
+
|
64 |
+
|
65 |
+
batch_sigmoid_ce_loss_jit = torch.jit.script(
|
66 |
+
batch_sigmoid_ce_loss
|
67 |
+
) # type: torch.jit.ScriptModule
|
68 |
+
|
69 |
+
|
70 |
+
class HungarianMatcher(nn.Module):
|
71 |
+
"""This class computes an assignment between the targets and the predictions of the network
|
72 |
+
|
73 |
+
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
74 |
+
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
75 |
+
while the others are un-matched (and thus treated as non-objects).
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0):
|
79 |
+
"""Creates the matcher
|
80 |
+
|
81 |
+
Params:
|
82 |
+
cost_class: This is the relative weight of the classification error in the matching cost
|
83 |
+
cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost
|
84 |
+
cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost
|
85 |
+
"""
|
86 |
+
super().__init__()
|
87 |
+
self.cost_class = cost_class
|
88 |
+
self.cost_mask = cost_mask
|
89 |
+
self.cost_dice = cost_dice
|
90 |
+
|
91 |
+
assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0"
|
92 |
+
|
93 |
+
self.num_points = num_points
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def memory_efficient_forward(self, outputs, targets):
|
97 |
+
"""More memory-friendly matching"""
|
98 |
+
bs, num_queries = outputs["pred_logits"].shape[:2]
|
99 |
+
|
100 |
+
indices = []
|
101 |
+
|
102 |
+
# Iterate through batch size
|
103 |
+
for b in range(bs):
|
104 |
+
|
105 |
+
out_prob = outputs["pred_logits"][b].softmax(-1) # [num_queries, num_classes]
|
106 |
+
tgt_ids = targets[b]["labels"]
|
107 |
+
|
108 |
+
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
|
109 |
+
# but approximate it in 1 - proba[target class].
|
110 |
+
# The 1 is a constant that doesn't change the matching, it can be ommitted.
|
111 |
+
cost_class = -out_prob[:, tgt_ids]
|
112 |
+
|
113 |
+
out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred]
|
114 |
+
# gt masks are already padded when preparing target
|
115 |
+
tgt_mask = targets[b]["masks"].to(out_mask)
|
116 |
+
|
117 |
+
out_mask = out_mask[:, None]
|
118 |
+
tgt_mask = tgt_mask[:, None]
|
119 |
+
# all masks share the same set of points for efficient matching!
|
120 |
+
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device)
|
121 |
+
# get gt labels
|
122 |
+
tgt_mask = point_sample(
|
123 |
+
tgt_mask,
|
124 |
+
point_coords.repeat(tgt_mask.shape[0], 1, 1),
|
125 |
+
align_corners=False,
|
126 |
+
).squeeze(1)
|
127 |
+
|
128 |
+
out_mask = point_sample(
|
129 |
+
out_mask,
|
130 |
+
point_coords.repeat(out_mask.shape[0], 1, 1),
|
131 |
+
align_corners=False,
|
132 |
+
).squeeze(1)
|
133 |
+
|
134 |
+
with autocast(enabled=False):
|
135 |
+
out_mask = out_mask.float()
|
136 |
+
tgt_mask = tgt_mask.float()
|
137 |
+
# Compute the focal loss between masks
|
138 |
+
cost_mask = batch_sigmoid_ce_loss(out_mask, tgt_mask)
|
139 |
+
|
140 |
+
# Compute the dice loss betwen masks
|
141 |
+
cost_dice = batch_dice_loss(out_mask, tgt_mask)
|
142 |
+
|
143 |
+
# Final cost matrix
|
144 |
+
C = (
|
145 |
+
self.cost_mask * cost_mask
|
146 |
+
+ self.cost_class * cost_class
|
147 |
+
+ self.cost_dice * cost_dice
|
148 |
+
)
|
149 |
+
C = C.reshape(num_queries, -1).cpu()
|
150 |
+
|
151 |
+
indices.append(linear_sum_assignment(C))
|
152 |
+
|
153 |
+
return [
|
154 |
+
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
|
155 |
+
for i, j in indices
|
156 |
+
]
|
157 |
+
|
158 |
+
@torch.no_grad()
|
159 |
+
def forward(self, outputs, targets):
|
160 |
+
"""Performs the matching
|
161 |
+
|
162 |
+
Params:
|
163 |
+
outputs: This is a dict that contains at least these entries:
|
164 |
+
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
165 |
+
"pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks
|
166 |
+
|
167 |
+
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
168 |
+
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
169 |
+
objects in the target) containing the class labels
|
170 |
+
"masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
174 |
+
- index_i is the indices of the selected predictions (in order)
|
175 |
+
- index_j is the indices of the corresponding selected targets (in order)
|
176 |
+
For each batch element, it holds:
|
177 |
+
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
178 |
+
"""
|
179 |
+
return self.memory_efficient_forward(outputs, targets)
|
180 |
+
|
181 |
+
def __repr__(self, _repr_indent=4):
|
182 |
+
head = "Matcher " + self.__class__.__name__
|
183 |
+
body = [
|
184 |
+
"cost_class: {}".format(self.cost_class),
|
185 |
+
"cost_mask: {}".format(self.cost_mask),
|
186 |
+
"cost_dice: {}".format(self.cost_dice),
|
187 |
+
]
|
188 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
189 |
+
return "\n".join(lines)
|
annotator/entityseg/mask2former/modeling/matcher_view.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/matcher.py
|
3 |
+
"""
|
4 |
+
Modules to compute the matching cost and solve the corresponding LSAP.
|
5 |
+
"""
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from scipy.optimize import linear_sum_assignment
|
9 |
+
from torch import nn
|
10 |
+
from torch.cuda.amp import autocast
|
11 |
+
|
12 |
+
from detectron2.projects.point_rend.point_features import point_sample
|
13 |
+
|
14 |
+
def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor):
|
15 |
+
"""
|
16 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
17 |
+
Args:
|
18 |
+
inputs: A float tensor of arbitrary shape.
|
19 |
+
The predictions for each example.
|
20 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
21 |
+
classification label for each element in inputs
|
22 |
+
(0 for the negative class and 1 for the positive class).
|
23 |
+
"""
|
24 |
+
inputs = inputs.sigmoid()
|
25 |
+
inputs = inputs.flatten(1)
|
26 |
+
numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets)
|
27 |
+
denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :]
|
28 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
29 |
+
return loss
|
30 |
+
|
31 |
+
|
32 |
+
batch_dice_loss_jit = torch.jit.script(
|
33 |
+
batch_dice_loss
|
34 |
+
) # type: torch.jit.ScriptModule
|
35 |
+
|
36 |
+
|
37 |
+
def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor):
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
inputs: A float tensor of arbitrary shape.
|
41 |
+
The predictions for each example.
|
42 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
43 |
+
classification label for each element in inputs
|
44 |
+
(0 for the negative class and 1 for the positive class).
|
45 |
+
Returns:
|
46 |
+
Loss tensor
|
47 |
+
"""
|
48 |
+
hw = inputs.shape[1]
|
49 |
+
|
50 |
+
pos = F.binary_cross_entropy_with_logits(
|
51 |
+
inputs, torch.ones_like(inputs), reduction="none"
|
52 |
+
)
|
53 |
+
neg = F.binary_cross_entropy_with_logits(
|
54 |
+
inputs, torch.zeros_like(inputs), reduction="none"
|
55 |
+
)
|
56 |
+
|
57 |
+
loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum(
|
58 |
+
"nc,mc->nm", neg, (1 - targets)
|
59 |
+
)
|
60 |
+
|
61 |
+
return loss / hw
|
62 |
+
|
63 |
+
|
64 |
+
batch_sigmoid_ce_loss_jit = torch.jit.script(
|
65 |
+
batch_sigmoid_ce_loss
|
66 |
+
) # type: torch.jit.ScriptModule
|
67 |
+
|
68 |
+
|
69 |
+
class ViewHungarianMatcher(nn.Module):
|
70 |
+
"""This class computes an assignment between the targets and the predictions of the network
|
71 |
+
|
72 |
+
For efficiency reasons, the targets don't include the no_object. Because of this, in general,
|
73 |
+
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions,
|
74 |
+
while the others are un-matched (and thus treated as non-objects).
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0):
|
78 |
+
"""Creates the matcher
|
79 |
+
|
80 |
+
Params:
|
81 |
+
cost_class: This is the relative weight of the classification error in the matching cost
|
82 |
+
cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost
|
83 |
+
cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost
|
84 |
+
"""
|
85 |
+
super().__init__()
|
86 |
+
self.cost_class = cost_class
|
87 |
+
self.cost_mask = cost_mask
|
88 |
+
self.cost_dice = cost_dice
|
89 |
+
|
90 |
+
assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0"
|
91 |
+
|
92 |
+
self.num_points = num_points
|
93 |
+
|
94 |
+
@torch.no_grad()
|
95 |
+
def memory_efficient_forward(self, outputs, targets):
|
96 |
+
"""More memory-friendly matching"""
|
97 |
+
### outputs["pred_logits"]: torch.Size([2, 100, 41]), query是对两帧负责,所以没有frame的概念
|
98 |
+
### outputs["pred_masks"]: torch.Size([2, 100, 2, 120, 160]), 第三维的2是两帧frame
|
99 |
+
bs, num_queries = outputs["pred_logits"].shape[:2]
|
100 |
+
|
101 |
+
indices = []
|
102 |
+
|
103 |
+
# Iterate through batch size
|
104 |
+
for b in range(bs):
|
105 |
+
out_prob = outputs["pred_logits"][b].softmax(-1) # [num_queries, num_classes]
|
106 |
+
## out_prob: [100, 41], 100个query, 40类+background类
|
107 |
+
tgt_ids = targets[b]["labels"]
|
108 |
+
## tgt_ids: tensor([ 3, 10]), 说明只有两个ground truth
|
109 |
+
|
110 |
+
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
|
111 |
+
# but approximate it in 1 - proba[target class].
|
112 |
+
# The 1 is a constant that doesn't change the matching, it can be ommitted.
|
113 |
+
cost_class = -out_prob[:, tgt_ids]
|
114 |
+
|
115 |
+
out_mask = outputs["pred_masks"][b] # [num_queries, T, H_pred, W_pred]
|
116 |
+
### out_mask: torch.Size([100, 2, 120, 160])
|
117 |
+
# gt masks are already padded when preparing target
|
118 |
+
tgt_mask = targets[b]["masks"].to(out_mask) # [num_gts, T, H_pred, W_pred]
|
119 |
+
## tgt_mask: torch.Size([2, 2, 480, 640])
|
120 |
+
|
121 |
+
# out_mask = out_mask[:, None]
|
122 |
+
# tgt_mask = tgt_mask[:, None]
|
123 |
+
# all masks share the same set of points for efficient matching!
|
124 |
+
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device)
|
125 |
+
# get gt labels
|
126 |
+
tgt_mask = point_sample(
|
127 |
+
tgt_mask,
|
128 |
+
point_coords.repeat(tgt_mask.shape[0], 1, 1), ## repeat了一份, torch.Size([2, 12544, 2]), 每一帧采样的位置都是一样的
|
129 |
+
align_corners=False,
|
130 |
+
).flatten(1)
|
131 |
+
|
132 |
+
out_mask = point_sample(
|
133 |
+
out_mask,
|
134 |
+
point_coords.repeat(out_mask.shape[0], 1, 1),
|
135 |
+
align_corners=False,
|
136 |
+
).flatten(1)
|
137 |
+
|
138 |
+
with autocast(enabled=False):
|
139 |
+
out_mask = out_mask.float() ## out_mask: torch.Size([100, 25088])
|
140 |
+
tgt_mask = tgt_mask.float() ## tgt_mask: torch.Size([2, 25088])
|
141 |
+
# Compute the focal loss between masks
|
142 |
+
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) ## cost_mask: torch.Size([100, 2])
|
143 |
+
|
144 |
+
# Compute the dice loss betwen masks
|
145 |
+
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) ## cost_dice: torch.Size([100, 2])
|
146 |
+
|
147 |
+
# Final cost matrix
|
148 |
+
C = (
|
149 |
+
self.cost_mask * cost_mask
|
150 |
+
+ self.cost_class * cost_class
|
151 |
+
+ self.cost_dice * cost_dice
|
152 |
+
)
|
153 |
+
C = C.reshape(num_queries, -1).cpu()
|
154 |
+
|
155 |
+
indices.append(linear_sum_assignment(C))
|
156 |
+
## [(array([17, 33]), array([1, 0]), ...]
|
157 |
+
|
158 |
+
return [
|
159 |
+
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
|
160 |
+
for i, j in indices
|
161 |
+
]
|
162 |
+
|
163 |
+
@torch.no_grad()
|
164 |
+
def forward(self, outputs, targets):
|
165 |
+
"""Performs the matching
|
166 |
+
|
167 |
+
Params:
|
168 |
+
outputs: This is a dict that contains at least these entries:
|
169 |
+
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
|
170 |
+
"pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks
|
171 |
+
|
172 |
+
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
|
173 |
+
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
|
174 |
+
objects in the target) containing the class labels
|
175 |
+
"masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
A list of size batch_size, containing tuples of (index_i, index_j) where:
|
179 |
+
- index_i is the indices of the selected predictions (in order)
|
180 |
+
- index_j is the indices of the corresponding selected targets (in order)
|
181 |
+
For each batch element, it holds:
|
182 |
+
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
|
183 |
+
"""
|
184 |
+
return self.memory_efficient_forward(outputs, targets)
|
185 |
+
|
186 |
+
def __repr__(self, _repr_indent=4):
|
187 |
+
head = "Matcher " + self.__class__.__name__
|
188 |
+
body = [
|
189 |
+
"cost_class: {}".format(self.cost_class),
|
190 |
+
"cost_mask: {}".format(self.cost_mask),
|
191 |
+
"cost_dice: {}".format(self.cost_dice),
|
192 |
+
]
|
193 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
194 |
+
return "\n".join(lines)
|
annotator/entityseg/mask2former/modeling/meta_arch/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
annotator/entityseg/mask2former/modeling/meta_arch/mask_former_head.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from copy import deepcopy
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
12 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
13 |
+
|
14 |
+
from ..transformer_decoder.maskformer_transformer_decoder import build_transformer_decoder
|
15 |
+
from ..pixel_decoder.fpn import build_pixel_decoder
|
16 |
+
|
17 |
+
|
18 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
19 |
+
class MaskFormerHead(nn.Module):
|
20 |
+
|
21 |
+
_version = 2
|
22 |
+
|
23 |
+
def _load_from_state_dict(
|
24 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
25 |
+
):
|
26 |
+
version = local_metadata.get("version", None)
|
27 |
+
if version is None or version < 2:
|
28 |
+
# Do not warn if train from scratch
|
29 |
+
scratch = True
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
for k in list(state_dict.keys()):
|
32 |
+
newk = k
|
33 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
34 |
+
# newk = k.replace(prefix, prefix + "pixel_decoder.")
|
35 |
+
newk = k.replace(prefix, prefix)
|
36 |
+
# logger.debug(f"{k} ==> {newk}")
|
37 |
+
if newk != k:
|
38 |
+
state_dict[newk] = state_dict[k]
|
39 |
+
del state_dict[k]
|
40 |
+
scratch = False
|
41 |
+
|
42 |
+
if not scratch:
|
43 |
+
logger.warning(
|
44 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
45 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
46 |
+
)
|
47 |
+
|
48 |
+
@configurable
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
input_shape: Dict[str, ShapeSpec],
|
52 |
+
*,
|
53 |
+
num_classes: int,
|
54 |
+
pixel_decoder: nn.Module,
|
55 |
+
loss_weight: float = 1.0,
|
56 |
+
ignore_value: int = -1,
|
57 |
+
# extra parameters
|
58 |
+
transformer_predictor: nn.Module,
|
59 |
+
transformer_in_feature: str,
|
60 |
+
):
|
61 |
+
"""
|
62 |
+
NOTE: this interface is experimental.
|
63 |
+
Args:
|
64 |
+
input_shape: shapes (channels and stride) of the input features
|
65 |
+
num_classes: number of classes to predict
|
66 |
+
pixel_decoder: the pixel decoder module
|
67 |
+
loss_weight: loss weight
|
68 |
+
ignore_value: category id to be ignored during training.
|
69 |
+
transformer_predictor: the transformer decoder that makes prediction
|
70 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
71 |
+
"""
|
72 |
+
super().__init__()
|
73 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
74 |
+
self.in_features = [k for k, v in input_shape]
|
75 |
+
feature_strides = [v.stride for k, v in input_shape]
|
76 |
+
feature_channels = [v.channels for k, v in input_shape]
|
77 |
+
|
78 |
+
self.ignore_value = ignore_value
|
79 |
+
self.common_stride = 4
|
80 |
+
self.loss_weight = loss_weight
|
81 |
+
|
82 |
+
self.pixel_decoder = pixel_decoder
|
83 |
+
self.predictor = transformer_predictor
|
84 |
+
self.transformer_in_feature = transformer_in_feature
|
85 |
+
|
86 |
+
self.num_classes = num_classes
|
87 |
+
|
88 |
+
@classmethod
|
89 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
90 |
+
# figure out in_channels to transformer predictor
|
91 |
+
if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder":
|
92 |
+
transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
93 |
+
elif cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "pixel_embedding":
|
94 |
+
transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
95 |
+
elif cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "multi_scale_pixel_decoder": # for maskformer2
|
96 |
+
transformer_predictor_in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
97 |
+
else:
|
98 |
+
transformer_predictor_in_channels = input_shape[cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE].channels
|
99 |
+
|
100 |
+
return {
|
101 |
+
"input_shape": {
|
102 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
103 |
+
},
|
104 |
+
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
105 |
+
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
106 |
+
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
|
107 |
+
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
|
108 |
+
"transformer_in_feature": cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE,
|
109 |
+
"transformer_predictor": build_transformer_decoder(
|
110 |
+
cfg,
|
111 |
+
transformer_predictor_in_channels,
|
112 |
+
mask_classification=True,
|
113 |
+
),
|
114 |
+
}
|
115 |
+
|
116 |
+
def forward(self, features, mask=None):
|
117 |
+
return self.layers(features, mask)
|
118 |
+
|
119 |
+
def layers(self, features, mask=None):
|
120 |
+
mask_features, transformer_encoder_features, multi_scale_features = self.pixel_decoder.forward_features(features)
|
121 |
+
if self.transformer_in_feature == "multi_scale_pixel_decoder":
|
122 |
+
predictions = self.predictor(multi_scale_features, mask_features, mask)
|
123 |
+
else:
|
124 |
+
if self.transformer_in_feature == "transformer_encoder":
|
125 |
+
assert (
|
126 |
+
transformer_encoder_features is not None
|
127 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
128 |
+
predictions = self.predictor(transformer_encoder_features, mask_features, mask)
|
129 |
+
elif self.transformer_in_feature == "pixel_embedding":
|
130 |
+
predictions = self.predictor(mask_features, mask_features, mask)
|
131 |
+
else:
|
132 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features, mask)
|
133 |
+
return predictions
|
annotator/entityseg/mask2former/modeling/meta_arch/per_pixel_baseline.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import fvcore.nn.weight_init as weight_init
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from detectron2.config import configurable
|
10 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
11 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
12 |
+
|
13 |
+
from ..transformer_decoder.maskformer_transformer_decoder import StandardTransformerDecoder
|
14 |
+
from ..pixel_decoder.fpn import build_pixel_decoder
|
15 |
+
|
16 |
+
|
17 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
18 |
+
class PerPixelBaselineHead(nn.Module):
|
19 |
+
|
20 |
+
_version = 2
|
21 |
+
|
22 |
+
def _load_from_state_dict(
|
23 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
24 |
+
):
|
25 |
+
version = local_metadata.get("version", None)
|
26 |
+
if version is None or version < 2:
|
27 |
+
logger = logging.getLogger(__name__)
|
28 |
+
# Do not warn if train from scratch
|
29 |
+
scratch = True
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
for k in list(state_dict.keys()):
|
32 |
+
newk = k
|
33 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
34 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
35 |
+
# logger.warning(f"{k} ==> {newk}")
|
36 |
+
if newk != k:
|
37 |
+
state_dict[newk] = state_dict[k]
|
38 |
+
del state_dict[k]
|
39 |
+
scratch = False
|
40 |
+
|
41 |
+
if not scratch:
|
42 |
+
logger.warning(
|
43 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
44 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
45 |
+
)
|
46 |
+
|
47 |
+
@configurable
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
input_shape: Dict[str, ShapeSpec],
|
51 |
+
*,
|
52 |
+
num_classes: int,
|
53 |
+
pixel_decoder: nn.Module,
|
54 |
+
loss_weight: float = 1.0,
|
55 |
+
ignore_value: int = -1,
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
NOTE: this interface is experimental.
|
59 |
+
Args:
|
60 |
+
input_shape: shapes (channels and stride) of the input features
|
61 |
+
num_classes: number of classes to predict
|
62 |
+
pixel_decoder: the pixel decoder module
|
63 |
+
loss_weight: loss weight
|
64 |
+
ignore_value: category id to be ignored during training.
|
65 |
+
"""
|
66 |
+
super().__init__()
|
67 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
68 |
+
self.in_features = [k for k, v in input_shape]
|
69 |
+
feature_strides = [v.stride for k, v in input_shape]
|
70 |
+
feature_channels = [v.channels for k, v in input_shape]
|
71 |
+
|
72 |
+
self.ignore_value = ignore_value
|
73 |
+
self.common_stride = 4
|
74 |
+
self.loss_weight = loss_weight
|
75 |
+
|
76 |
+
self.pixel_decoder = pixel_decoder
|
77 |
+
self.predictor = Conv2d(
|
78 |
+
self.pixel_decoder.mask_dim, num_classes, kernel_size=1, stride=1, padding=0
|
79 |
+
)
|
80 |
+
weight_init.c2_msra_fill(self.predictor)
|
81 |
+
|
82 |
+
@classmethod
|
83 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
84 |
+
return {
|
85 |
+
"input_shape": {
|
86 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
87 |
+
},
|
88 |
+
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
89 |
+
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
90 |
+
"pixel_decoder": build_pixel_decoder(cfg, input_shape),
|
91 |
+
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
|
92 |
+
}
|
93 |
+
|
94 |
+
def forward(self, features, targets=None):
|
95 |
+
"""
|
96 |
+
Returns:
|
97 |
+
In training, returns (None, dict of losses)
|
98 |
+
In inference, returns (CxHxW logits, {})
|
99 |
+
"""
|
100 |
+
x = self.layers(features)
|
101 |
+
if self.training:
|
102 |
+
return None, self.losses(x, targets)
|
103 |
+
else:
|
104 |
+
x = F.interpolate(
|
105 |
+
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
106 |
+
)
|
107 |
+
return x, {}
|
108 |
+
|
109 |
+
def layers(self, features):
|
110 |
+
x, _, _ = self.pixel_decoder.forward_features(features)
|
111 |
+
x = self.predictor(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
def losses(self, predictions, targets):
|
115 |
+
predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163
|
116 |
+
predictions = F.interpolate(
|
117 |
+
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
118 |
+
)
|
119 |
+
loss = F.cross_entropy(
|
120 |
+
predictions, targets, reduction="mean", ignore_index=self.ignore_value
|
121 |
+
)
|
122 |
+
losses = {"loss_sem_seg": loss * self.loss_weight}
|
123 |
+
return losses
|
124 |
+
|
125 |
+
|
126 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
127 |
+
class PerPixelBaselinePlusHead(PerPixelBaselineHead):
|
128 |
+
def _load_from_state_dict(
|
129 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
130 |
+
):
|
131 |
+
version = local_metadata.get("version", None)
|
132 |
+
if version is None or version < 2:
|
133 |
+
# Do not warn if train from scratch
|
134 |
+
scratch = True
|
135 |
+
logger = logging.getLogger(__name__)
|
136 |
+
for k in list(state_dict.keys()):
|
137 |
+
newk = k
|
138 |
+
if "sem_seg_head" in k and not k.startswith(prefix + "predictor"):
|
139 |
+
newk = k.replace(prefix, prefix + "pixel_decoder.")
|
140 |
+
logger.debug(f"{k} ==> {newk}")
|
141 |
+
if newk != k:
|
142 |
+
state_dict[newk] = state_dict[k]
|
143 |
+
del state_dict[k]
|
144 |
+
scratch = False
|
145 |
+
|
146 |
+
if not scratch:
|
147 |
+
logger.warning(
|
148 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
149 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
150 |
+
)
|
151 |
+
|
152 |
+
@configurable
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
input_shape: Dict[str, ShapeSpec],
|
156 |
+
*,
|
157 |
+
# extra parameters
|
158 |
+
transformer_predictor: nn.Module,
|
159 |
+
transformer_in_feature: str,
|
160 |
+
deep_supervision: bool,
|
161 |
+
# inherit parameters
|
162 |
+
num_classes: int,
|
163 |
+
pixel_decoder: nn.Module,
|
164 |
+
loss_weight: float = 1.0,
|
165 |
+
ignore_value: int = -1,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
NOTE: this interface is experimental.
|
169 |
+
Args:
|
170 |
+
input_shape: shapes (channels and stride) of the input features
|
171 |
+
transformer_predictor: the transformer decoder that makes prediction
|
172 |
+
transformer_in_feature: input feature name to the transformer_predictor
|
173 |
+
deep_supervision: whether or not to add supervision to the output of
|
174 |
+
every transformer decoder layer
|
175 |
+
num_classes: number of classes to predict
|
176 |
+
pixel_decoder: the pixel decoder module
|
177 |
+
loss_weight: loss weight
|
178 |
+
ignore_value: category id to be ignored during training.
|
179 |
+
"""
|
180 |
+
super().__init__(
|
181 |
+
input_shape,
|
182 |
+
num_classes=num_classes,
|
183 |
+
pixel_decoder=pixel_decoder,
|
184 |
+
loss_weight=loss_weight,
|
185 |
+
ignore_value=ignore_value,
|
186 |
+
)
|
187 |
+
|
188 |
+
del self.predictor
|
189 |
+
|
190 |
+
self.predictor = transformer_predictor
|
191 |
+
self.transformer_in_feature = transformer_in_feature
|
192 |
+
self.deep_supervision = deep_supervision
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
196 |
+
ret = super().from_config(cfg, input_shape)
|
197 |
+
ret["transformer_in_feature"] = cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE
|
198 |
+
if cfg.MODEL.MASK_FORMER.TRANSFORMER_IN_FEATURE == "transformer_encoder":
|
199 |
+
in_channels = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
200 |
+
else:
|
201 |
+
in_channels = input_shape[ret["transformer_in_feature"]].channels
|
202 |
+
ret["transformer_predictor"] = StandardTransformerDecoder(
|
203 |
+
cfg, in_channels, mask_classification=False
|
204 |
+
)
|
205 |
+
ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
206 |
+
return ret
|
207 |
+
|
208 |
+
def forward(self, features, targets=None):
|
209 |
+
"""
|
210 |
+
Returns:
|
211 |
+
In training, returns (None, dict of losses)
|
212 |
+
In inference, returns (CxHxW logits, {})
|
213 |
+
"""
|
214 |
+
x, aux_outputs = self.layers(features)
|
215 |
+
if self.training:
|
216 |
+
if self.deep_supervision:
|
217 |
+
losses = self.losses(x, targets)
|
218 |
+
for i, aux_output in enumerate(aux_outputs):
|
219 |
+
losses["loss_sem_seg" + f"_{i}"] = self.losses(
|
220 |
+
aux_output["pred_masks"], targets
|
221 |
+
)["loss_sem_seg"]
|
222 |
+
return None, losses
|
223 |
+
else:
|
224 |
+
return None, self.losses(x, targets)
|
225 |
+
else:
|
226 |
+
x = F.interpolate(
|
227 |
+
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
|
228 |
+
)
|
229 |
+
return x, {}
|
230 |
+
|
231 |
+
def layers(self, features):
|
232 |
+
mask_features, transformer_encoder_features, _ = self.pixel_decoder.forward_features(features)
|
233 |
+
if self.transformer_in_feature == "transformer_encoder":
|
234 |
+
assert (
|
235 |
+
transformer_encoder_features is not None
|
236 |
+
), "Please use the TransformerEncoderPixelDecoder."
|
237 |
+
predictions = self.predictor(transformer_encoder_features, mask_features)
|
238 |
+
else:
|
239 |
+
predictions = self.predictor(features[self.transformer_in_feature], mask_features)
|
240 |
+
if self.deep_supervision:
|
241 |
+
return predictions["pred_masks"], predictions["aux_outputs"]
|
242 |
+
else:
|
243 |
+
return predictions["pred_masks"], None
|
annotator/entityseg/mask2former/modeling/pixel_decoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
annotator/entityseg/mask2former/modeling/pixel_decoder/fpn.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
|
11 |
+
from torch.cuda.amp import autocast
|
12 |
+
|
13 |
+
from detectron2.config import configurable
|
14 |
+
from detectron2.layers import Conv2d, DeformConv, ShapeSpec, get_norm
|
15 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
16 |
+
|
17 |
+
from ..transformer_decoder.position_encoding import PositionEmbeddingSine
|
18 |
+
from ..transformer_decoder.transformer import TransformerEncoder, TransformerEncoderLayer, _get_clones, _get_activation_fn
|
19 |
+
|
20 |
+
|
21 |
+
def build_pixel_decoder(cfg, input_shape):
|
22 |
+
"""
|
23 |
+
Build a pixel decoder from `cfg.MODEL.MASK_FORMER.PIXEL_DECODER_NAME`.
|
24 |
+
"""
|
25 |
+
name = cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME
|
26 |
+
model = SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
|
27 |
+
forward_features = getattr(model, "forward_features", None)
|
28 |
+
if not callable(forward_features):
|
29 |
+
raise ValueError(
|
30 |
+
"Only SEM_SEG_HEADS with forward_features method can be used as pixel decoder. "
|
31 |
+
f"Please implement forward_features for {name} to only return mask features."
|
32 |
+
)
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
# This is a modified FPN decoder.
|
37 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
38 |
+
class BasePixelDecoder(nn.Module):
|
39 |
+
@configurable
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
input_shape: Dict[str, ShapeSpec],
|
43 |
+
*,
|
44 |
+
conv_dim: int,
|
45 |
+
mask_dim: int,
|
46 |
+
norm: Optional[Union[str, Callable]] = None,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
NOTE: this interface is experimental.
|
50 |
+
Args:
|
51 |
+
input_shape: shapes (channels and stride) of the input features
|
52 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
53 |
+
mask_dim: number of output channels for the final conv layer.
|
54 |
+
norm (str or callable): normalization for all conv layers
|
55 |
+
"""
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
59 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
60 |
+
feature_channels = [v.channels for k, v in input_shape]
|
61 |
+
|
62 |
+
lateral_convs = []
|
63 |
+
output_convs = []
|
64 |
+
|
65 |
+
use_bias = norm == ""
|
66 |
+
for idx, in_channels in enumerate(feature_channels):
|
67 |
+
if idx == len(self.in_features) - 1:
|
68 |
+
output_norm = get_norm(norm, conv_dim)
|
69 |
+
output_conv = Conv2d(
|
70 |
+
in_channels,
|
71 |
+
conv_dim,
|
72 |
+
kernel_size=3,
|
73 |
+
stride=1,
|
74 |
+
padding=1,
|
75 |
+
bias=use_bias,
|
76 |
+
norm=output_norm,
|
77 |
+
activation=F.relu,
|
78 |
+
)
|
79 |
+
weight_init.c2_xavier_fill(output_conv)
|
80 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
81 |
+
|
82 |
+
lateral_convs.append(None)
|
83 |
+
output_convs.append(output_conv)
|
84 |
+
else:
|
85 |
+
lateral_norm = get_norm(norm, conv_dim)
|
86 |
+
output_norm = get_norm(norm, conv_dim)
|
87 |
+
|
88 |
+
lateral_conv = Conv2d(
|
89 |
+
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
|
90 |
+
)
|
91 |
+
output_conv = Conv2d(
|
92 |
+
conv_dim,
|
93 |
+
conv_dim,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1,
|
97 |
+
bias=use_bias,
|
98 |
+
norm=output_norm,
|
99 |
+
activation=F.relu,
|
100 |
+
)
|
101 |
+
weight_init.c2_xavier_fill(lateral_conv)
|
102 |
+
weight_init.c2_xavier_fill(output_conv)
|
103 |
+
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
|
104 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
105 |
+
|
106 |
+
lateral_convs.append(lateral_conv)
|
107 |
+
output_convs.append(output_conv)
|
108 |
+
# Place convs into top-down order (from low to high resolution)
|
109 |
+
# to make the top-down computation in forward clearer.
|
110 |
+
self.lateral_convs = lateral_convs[::-1]
|
111 |
+
self.output_convs = output_convs[::-1]
|
112 |
+
|
113 |
+
self.mask_dim = mask_dim
|
114 |
+
self.mask_features = Conv2d(
|
115 |
+
conv_dim,
|
116 |
+
mask_dim,
|
117 |
+
kernel_size=3,
|
118 |
+
stride=1,
|
119 |
+
padding=1,
|
120 |
+
)
|
121 |
+
weight_init.c2_xavier_fill(self.mask_features)
|
122 |
+
|
123 |
+
self.maskformer_num_feature_levels = 3 # always use 3 scales
|
124 |
+
|
125 |
+
@classmethod
|
126 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
127 |
+
ret = {}
|
128 |
+
ret["input_shape"] = {
|
129 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
130 |
+
}
|
131 |
+
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
132 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
133 |
+
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
|
134 |
+
return ret
|
135 |
+
|
136 |
+
def forward_features(self, features):
|
137 |
+
multi_scale_features = []
|
138 |
+
num_cur_levels = 0
|
139 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
140 |
+
for idx, f in enumerate(self.in_features[::-1]):
|
141 |
+
x = features[f]
|
142 |
+
lateral_conv = self.lateral_convs[idx]
|
143 |
+
output_conv = self.output_convs[idx]
|
144 |
+
if lateral_conv is None:
|
145 |
+
y = output_conv(x)
|
146 |
+
else:
|
147 |
+
cur_fpn = lateral_conv(x)
|
148 |
+
# Following FPN implementation, we use nearest upsampling here
|
149 |
+
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
|
150 |
+
y = output_conv(y)
|
151 |
+
if num_cur_levels < self.maskformer_num_feature_levels:
|
152 |
+
multi_scale_features.append(y)
|
153 |
+
num_cur_levels += 1
|
154 |
+
return self.mask_features(y), None, multi_scale_features
|
155 |
+
|
156 |
+
def forward(self, features, targets=None):
|
157 |
+
logger = logging.getLogger(__name__)
|
158 |
+
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
|
159 |
+
return self.forward_features(features)
|
160 |
+
|
161 |
+
|
162 |
+
class TransformerEncoderOnly(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
d_model=512,
|
166 |
+
nhead=8,
|
167 |
+
num_encoder_layers=6,
|
168 |
+
dim_feedforward=2048,
|
169 |
+
dropout=0.1,
|
170 |
+
activation="relu",
|
171 |
+
normalize_before=False,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
encoder_layer = TransformerEncoderLayer(
|
176 |
+
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
177 |
+
)
|
178 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
179 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
180 |
+
|
181 |
+
self._reset_parameters()
|
182 |
+
|
183 |
+
self.d_model = d_model
|
184 |
+
self.nhead = nhead
|
185 |
+
|
186 |
+
def _reset_parameters(self):
|
187 |
+
for p in self.parameters():
|
188 |
+
if p.dim() > 1:
|
189 |
+
nn.init.xavier_uniform_(p)
|
190 |
+
|
191 |
+
def forward(self, src, mask, pos_embed):
|
192 |
+
# flatten NxCxHxW to HWxNxC
|
193 |
+
bs, c, h, w = src.shape
|
194 |
+
src = src.flatten(2).permute(2, 0, 1)
|
195 |
+
pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
|
196 |
+
if mask is not None:
|
197 |
+
mask = mask.flatten(1)
|
198 |
+
|
199 |
+
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
200 |
+
return memory.permute(1, 2, 0).view(bs, c, h, w)
|
201 |
+
|
202 |
+
|
203 |
+
# This is a modified FPN decoder with extra Transformer encoder that processes the lowest-resolution feature map.
|
204 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
205 |
+
class TransformerEncoderPixelDecoder(BasePixelDecoder):
|
206 |
+
@configurable
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
input_shape: Dict[str, ShapeSpec],
|
210 |
+
*,
|
211 |
+
transformer_dropout: float,
|
212 |
+
transformer_nheads: int,
|
213 |
+
transformer_dim_feedforward: int,
|
214 |
+
transformer_enc_layers: int,
|
215 |
+
transformer_pre_norm: bool,
|
216 |
+
conv_dim: int,
|
217 |
+
mask_dim: int,
|
218 |
+
norm: Optional[Union[str, Callable]] = None,
|
219 |
+
):
|
220 |
+
"""
|
221 |
+
NOTE: this interface is experimental.
|
222 |
+
Args:
|
223 |
+
input_shape: shapes (channels and stride) of the input features
|
224 |
+
transformer_dropout: dropout probability in transformer
|
225 |
+
transformer_nheads: number of heads in transformer
|
226 |
+
transformer_dim_feedforward: dimension of feedforward network
|
227 |
+
transformer_enc_layers: number of transformer encoder layers
|
228 |
+
transformer_pre_norm: whether to use pre-layernorm or not
|
229 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
230 |
+
mask_dim: number of output channels for the final conv layer.
|
231 |
+
norm (str or callable): normalization for all conv layers
|
232 |
+
"""
|
233 |
+
super().__init__(input_shape, conv_dim=conv_dim, mask_dim=mask_dim, norm=norm)
|
234 |
+
|
235 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
236 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
237 |
+
feature_strides = [v.stride for k, v in input_shape]
|
238 |
+
feature_channels = [v.channels for k, v in input_shape]
|
239 |
+
|
240 |
+
in_channels = feature_channels[len(self.in_features) - 1]
|
241 |
+
self.input_proj = Conv2d(in_channels, conv_dim, kernel_size=1)
|
242 |
+
weight_init.c2_xavier_fill(self.input_proj)
|
243 |
+
self.transformer = TransformerEncoderOnly(
|
244 |
+
d_model=conv_dim,
|
245 |
+
dropout=transformer_dropout,
|
246 |
+
nhead=transformer_nheads,
|
247 |
+
dim_feedforward=transformer_dim_feedforward,
|
248 |
+
num_encoder_layers=transformer_enc_layers,
|
249 |
+
normalize_before=transformer_pre_norm,
|
250 |
+
)
|
251 |
+
N_steps = conv_dim // 2
|
252 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
253 |
+
|
254 |
+
# update layer
|
255 |
+
use_bias = norm == ""
|
256 |
+
output_norm = get_norm(norm, conv_dim)
|
257 |
+
output_conv = Conv2d(
|
258 |
+
conv_dim,
|
259 |
+
conv_dim,
|
260 |
+
kernel_size=3,
|
261 |
+
stride=1,
|
262 |
+
padding=1,
|
263 |
+
bias=use_bias,
|
264 |
+
norm=output_norm,
|
265 |
+
activation=F.relu,
|
266 |
+
)
|
267 |
+
weight_init.c2_xavier_fill(output_conv)
|
268 |
+
delattr(self, "layer_{}".format(len(self.in_features)))
|
269 |
+
self.add_module("layer_{}".format(len(self.in_features)), output_conv)
|
270 |
+
self.output_convs[0] = output_conv
|
271 |
+
|
272 |
+
@classmethod
|
273 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
274 |
+
ret = super().from_config(cfg, input_shape)
|
275 |
+
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
276 |
+
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
277 |
+
ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
278 |
+
ret[
|
279 |
+
"transformer_enc_layers"
|
280 |
+
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
|
281 |
+
ret["transformer_pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
282 |
+
return ret
|
283 |
+
|
284 |
+
def forward_features(self, features):
|
285 |
+
multi_scale_features = []
|
286 |
+
num_cur_levels = 0
|
287 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
288 |
+
for idx, f in enumerate(self.in_features[::-1]):
|
289 |
+
x = features[f]
|
290 |
+
lateral_conv = self.lateral_convs[idx]
|
291 |
+
output_conv = self.output_convs[idx]
|
292 |
+
if lateral_conv is None:
|
293 |
+
transformer = self.input_proj(x)
|
294 |
+
pos = self.pe_layer(x)
|
295 |
+
transformer = self.transformer(transformer, None, pos)
|
296 |
+
y = output_conv(transformer)
|
297 |
+
# save intermediate feature as input to Transformer decoder
|
298 |
+
transformer_encoder_features = transformer
|
299 |
+
else:
|
300 |
+
cur_fpn = lateral_conv(x)
|
301 |
+
# Following FPN implementation, we use nearest upsampling here
|
302 |
+
y = cur_fpn + F.interpolate(y, size=cur_fpn.shape[-2:], mode="nearest")
|
303 |
+
y = output_conv(y)
|
304 |
+
if num_cur_levels < self.maskformer_num_feature_levels:
|
305 |
+
multi_scale_features.append(y)
|
306 |
+
num_cur_levels += 1
|
307 |
+
return self.mask_features(y), transformer_encoder_features, multi_scale_features
|
308 |
+
|
309 |
+
def forward(self, features, targets=None):
|
310 |
+
logger = logging.getLogger(__name__)
|
311 |
+
logger.warning("Calling forward() may cause unpredicted behavior of PixelDecoder module.")
|
312 |
+
return self.forward_features(features)
|
annotator/entityseg/mask2former/modeling/pixel_decoder/msdeformattn.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import logging
|
3 |
+
import numpy as np
|
4 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import fvcore.nn.weight_init as weight_init
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
|
11 |
+
from torch.cuda.amp import autocast
|
12 |
+
|
13 |
+
from detectron2.config import configurable
|
14 |
+
from detectron2.layers import Conv2d, ShapeSpec, get_norm
|
15 |
+
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
|
16 |
+
|
17 |
+
from ..transformer_decoder.position_encoding import PositionEmbeddingSine
|
18 |
+
from ..transformer_decoder.transformer import _get_clones, _get_activation_fn
|
19 |
+
from .ops.modules import MSDeformAttn
|
20 |
+
|
21 |
+
|
22 |
+
# MSDeformAttn Transformer encoder in deformable detr
|
23 |
+
class MSDeformAttnTransformerEncoderOnly(nn.Module):
|
24 |
+
def __init__(self, d_model=256, nhead=8,
|
25 |
+
num_encoder_layers=6, dim_feedforward=1024, dropout=0.1,
|
26 |
+
activation="relu",
|
27 |
+
num_feature_levels=4, enc_n_points=4,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.d_model = d_model
|
32 |
+
self.nhead = nhead
|
33 |
+
|
34 |
+
encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model, dim_feedforward,
|
35 |
+
dropout, activation,
|
36 |
+
num_feature_levels, nhead, enc_n_points)
|
37 |
+
self.encoder = MSDeformAttnTransformerEncoder(encoder_layer, num_encoder_layers)
|
38 |
+
|
39 |
+
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
|
40 |
+
|
41 |
+
self._reset_parameters()
|
42 |
+
|
43 |
+
def _reset_parameters(self):
|
44 |
+
for p in self.parameters():
|
45 |
+
if p.dim() > 1:
|
46 |
+
nn.init.xavier_uniform_(p)
|
47 |
+
for m in self.modules():
|
48 |
+
if isinstance(m, MSDeformAttn):
|
49 |
+
m._reset_parameters()
|
50 |
+
normal_(self.level_embed)
|
51 |
+
|
52 |
+
def get_valid_ratio(self, mask):
|
53 |
+
_, H, W = mask.shape
|
54 |
+
valid_H = torch.sum(~mask[:, :, 0], 1)
|
55 |
+
valid_W = torch.sum(~mask[:, 0, :], 1)
|
56 |
+
valid_ratio_h = valid_H.float() / H
|
57 |
+
valid_ratio_w = valid_W.float() / W
|
58 |
+
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
|
59 |
+
return valid_ratio
|
60 |
+
|
61 |
+
def forward(self, srcs, pos_embeds):
|
62 |
+
masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs]
|
63 |
+
# prepare input for encoder
|
64 |
+
src_flatten = []
|
65 |
+
mask_flatten = []
|
66 |
+
lvl_pos_embed_flatten = []
|
67 |
+
spatial_shapes = []
|
68 |
+
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
|
69 |
+
bs, c, h, w = src.shape
|
70 |
+
spatial_shape = (h, w)
|
71 |
+
spatial_shapes.append(spatial_shape)
|
72 |
+
src = src.flatten(2).transpose(1, 2)
|
73 |
+
mask = mask.flatten(1)
|
74 |
+
pos_embed = pos_embed.flatten(2).transpose(1, 2)
|
75 |
+
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
|
76 |
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
77 |
+
src_flatten.append(src)
|
78 |
+
mask_flatten.append(mask)
|
79 |
+
src_flatten = torch.cat(src_flatten, 1)
|
80 |
+
mask_flatten = torch.cat(mask_flatten, 1)
|
81 |
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
|
82 |
+
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
|
83 |
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
84 |
+
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
|
85 |
+
|
86 |
+
# encoder
|
87 |
+
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)
|
88 |
+
|
89 |
+
return memory, spatial_shapes, level_start_index
|
90 |
+
|
91 |
+
|
92 |
+
class MSDeformAttnTransformerEncoderLayer(nn.Module):
|
93 |
+
def __init__(self,
|
94 |
+
d_model=256, d_ffn=1024,
|
95 |
+
dropout=0.1, activation="relu",
|
96 |
+
n_levels=4, n_heads=8, n_points=4):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
# self attention
|
100 |
+
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
101 |
+
self.dropout1 = nn.Dropout(dropout)
|
102 |
+
self.norm1 = nn.LayerNorm(d_model)
|
103 |
+
|
104 |
+
# ffn
|
105 |
+
self.linear1 = nn.Linear(d_model, d_ffn)
|
106 |
+
self.activation = _get_activation_fn(activation)
|
107 |
+
self.dropout2 = nn.Dropout(dropout)
|
108 |
+
self.linear2 = nn.Linear(d_ffn, d_model)
|
109 |
+
self.dropout3 = nn.Dropout(dropout)
|
110 |
+
self.norm2 = nn.LayerNorm(d_model)
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def with_pos_embed(tensor, pos):
|
114 |
+
return tensor if pos is None else tensor + pos
|
115 |
+
|
116 |
+
def forward_ffn(self, src):
|
117 |
+
src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
|
118 |
+
src = src + self.dropout3(src2)
|
119 |
+
src = self.norm2(src)
|
120 |
+
return src
|
121 |
+
|
122 |
+
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
|
123 |
+
# self attention
|
124 |
+
src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)
|
125 |
+
src = src + self.dropout1(src2)
|
126 |
+
src = self.norm1(src)
|
127 |
+
|
128 |
+
# ffn
|
129 |
+
src = self.forward_ffn(src)
|
130 |
+
|
131 |
+
return src
|
132 |
+
|
133 |
+
|
134 |
+
class MSDeformAttnTransformerEncoder(nn.Module):
|
135 |
+
def __init__(self, encoder_layer, num_layers):
|
136 |
+
super().__init__()
|
137 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
138 |
+
self.num_layers = num_layers
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def get_reference_points(spatial_shapes, valid_ratios, device):
|
142 |
+
reference_points_list = []
|
143 |
+
for lvl, (H_, W_) in enumerate(spatial_shapes):
|
144 |
+
|
145 |
+
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
|
146 |
+
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
|
147 |
+
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
|
148 |
+
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
|
149 |
+
ref = torch.stack((ref_x, ref_y), -1)
|
150 |
+
reference_points_list.append(ref)
|
151 |
+
reference_points = torch.cat(reference_points_list, 1)
|
152 |
+
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
153 |
+
return reference_points
|
154 |
+
|
155 |
+
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
|
156 |
+
output = src
|
157 |
+
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
|
158 |
+
for _, layer in enumerate(self.layers):
|
159 |
+
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
|
160 |
+
|
161 |
+
return output
|
162 |
+
|
163 |
+
|
164 |
+
@SEM_SEG_HEADS_REGISTRY.register()
|
165 |
+
class MSDeformAttnPixelDecoder(nn.Module):
|
166 |
+
@configurable
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
input_shape: Dict[str, ShapeSpec],
|
170 |
+
*,
|
171 |
+
transformer_dropout: float,
|
172 |
+
transformer_nheads: int,
|
173 |
+
transformer_dim_feedforward: int,
|
174 |
+
transformer_enc_layers: int,
|
175 |
+
conv_dim: int,
|
176 |
+
mask_dim: int,
|
177 |
+
norm: Optional[Union[str, Callable]] = None,
|
178 |
+
# deformable transformer encoder args
|
179 |
+
transformer_in_features: List[str],
|
180 |
+
common_stride: int,
|
181 |
+
):
|
182 |
+
"""
|
183 |
+
NOTE: this interface is experimental.
|
184 |
+
Args:
|
185 |
+
input_shape: shapes (channels and stride) of the input features
|
186 |
+
transformer_dropout: dropout probability in transformer
|
187 |
+
transformer_nheads: number of heads in transformer
|
188 |
+
transformer_dim_feedforward: dimension of feedforward network
|
189 |
+
transformer_enc_layers: number of transformer encoder layers
|
190 |
+
conv_dims: number of output channels for the intermediate conv layers.
|
191 |
+
mask_dim: number of output channels for the final conv layer.
|
192 |
+
norm (str or callable): normalization for all conv layers
|
193 |
+
"""
|
194 |
+
super().__init__()
|
195 |
+
transformer_input_shape = {
|
196 |
+
k: v for k, v in input_shape.items() if k in transformer_in_features
|
197 |
+
}
|
198 |
+
|
199 |
+
# this is the input shape of pixel decoder
|
200 |
+
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
|
201 |
+
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
|
202 |
+
self.feature_strides = [v.stride for k, v in input_shape]
|
203 |
+
self.feature_channels = [v.channels for k, v in input_shape]
|
204 |
+
|
205 |
+
# this is the input shape of transformer encoder (could use less features than pixel decoder
|
206 |
+
transformer_input_shape = sorted(transformer_input_shape.items(), key=lambda x: x[1].stride)
|
207 |
+
self.transformer_in_features = [k for k, v in transformer_input_shape] # starting from "res2" to "res5"
|
208 |
+
transformer_in_channels = [v.channels for k, v in transformer_input_shape]
|
209 |
+
self.transformer_feature_strides = [v.stride for k, v in transformer_input_shape] # to decide extra FPN layers
|
210 |
+
|
211 |
+
self.transformer_num_feature_levels = len(self.transformer_in_features)
|
212 |
+
if self.transformer_num_feature_levels > 1:
|
213 |
+
input_proj_list = []
|
214 |
+
# from low resolution to high resolution (res5 -> res2)
|
215 |
+
for in_channels in transformer_in_channels[::-1]:
|
216 |
+
input_proj_list.append(nn.Sequential(
|
217 |
+
nn.Conv2d(in_channels, conv_dim, kernel_size=1),
|
218 |
+
nn.GroupNorm(32, conv_dim),
|
219 |
+
))
|
220 |
+
self.input_proj = nn.ModuleList(input_proj_list)
|
221 |
+
else:
|
222 |
+
self.input_proj = nn.ModuleList([
|
223 |
+
nn.Sequential(
|
224 |
+
nn.Conv2d(transformer_in_channels[-1], conv_dim, kernel_size=1),
|
225 |
+
nn.GroupNorm(32, conv_dim),
|
226 |
+
)])
|
227 |
+
|
228 |
+
for proj in self.input_proj:
|
229 |
+
nn.init.xavier_uniform_(proj[0].weight, gain=1)
|
230 |
+
nn.init.constant_(proj[0].bias, 0)
|
231 |
+
|
232 |
+
self.transformer = MSDeformAttnTransformerEncoderOnly(
|
233 |
+
d_model=conv_dim,
|
234 |
+
dropout=transformer_dropout,
|
235 |
+
nhead=transformer_nheads,
|
236 |
+
dim_feedforward=transformer_dim_feedforward,
|
237 |
+
num_encoder_layers=transformer_enc_layers,
|
238 |
+
num_feature_levels=self.transformer_num_feature_levels,
|
239 |
+
)
|
240 |
+
N_steps = conv_dim // 2
|
241 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
242 |
+
|
243 |
+
self.mask_dim = mask_dim
|
244 |
+
# use 1x1 conv instead
|
245 |
+
self.mask_features = Conv2d(
|
246 |
+
conv_dim,
|
247 |
+
mask_dim,
|
248 |
+
kernel_size=1,
|
249 |
+
stride=1,
|
250 |
+
padding=0,
|
251 |
+
)
|
252 |
+
weight_init.c2_xavier_fill(self.mask_features)
|
253 |
+
|
254 |
+
self.maskformer_num_feature_levels = 3 # always use 3 scales
|
255 |
+
self.common_stride = common_stride
|
256 |
+
|
257 |
+
# extra fpn levels
|
258 |
+
stride = min(self.transformer_feature_strides)
|
259 |
+
self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride))
|
260 |
+
|
261 |
+
lateral_convs = []
|
262 |
+
output_convs = []
|
263 |
+
|
264 |
+
use_bias = norm == ""
|
265 |
+
for idx, in_channels in enumerate(self.feature_channels[:self.num_fpn_levels]):
|
266 |
+
lateral_norm = get_norm(norm, conv_dim)
|
267 |
+
output_norm = get_norm(norm, conv_dim)
|
268 |
+
|
269 |
+
lateral_conv = Conv2d(
|
270 |
+
in_channels, conv_dim, kernel_size=1, bias=use_bias, norm=lateral_norm
|
271 |
+
)
|
272 |
+
output_conv = Conv2d(
|
273 |
+
conv_dim,
|
274 |
+
conv_dim,
|
275 |
+
kernel_size=3,
|
276 |
+
stride=1,
|
277 |
+
padding=1,
|
278 |
+
bias=use_bias,
|
279 |
+
norm=output_norm,
|
280 |
+
activation=F.relu,
|
281 |
+
)
|
282 |
+
weight_init.c2_xavier_fill(lateral_conv)
|
283 |
+
weight_init.c2_xavier_fill(output_conv)
|
284 |
+
self.add_module("adapter_{}".format(idx + 1), lateral_conv)
|
285 |
+
self.add_module("layer_{}".format(idx + 1), output_conv)
|
286 |
+
|
287 |
+
lateral_convs.append(lateral_conv)
|
288 |
+
output_convs.append(output_conv)
|
289 |
+
# Place convs into top-down order (from low to high resolution)
|
290 |
+
# to make the top-down computation in forward clearer.
|
291 |
+
self.lateral_convs = lateral_convs[::-1]
|
292 |
+
self.output_convs = output_convs[::-1]
|
293 |
+
|
294 |
+
@classmethod
|
295 |
+
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
|
296 |
+
ret = {}
|
297 |
+
ret["input_shape"] = {
|
298 |
+
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
|
299 |
+
}
|
300 |
+
ret["conv_dim"] = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
|
301 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
302 |
+
ret["norm"] = cfg.MODEL.SEM_SEG_HEAD.NORM
|
303 |
+
ret["transformer_dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
304 |
+
ret["transformer_nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
305 |
+
# ret["transformer_dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
306 |
+
ret["transformer_dim_feedforward"] = 1024 # use 1024 for deformable transformer encoder
|
307 |
+
ret[
|
308 |
+
"transformer_enc_layers"
|
309 |
+
] = cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS # a separate config
|
310 |
+
ret["transformer_in_features"] = cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES
|
311 |
+
ret["common_stride"] = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE
|
312 |
+
return ret
|
313 |
+
|
314 |
+
@autocast(enabled=False)
|
315 |
+
def forward_features(self, features):
|
316 |
+
srcs = []
|
317 |
+
pos = []
|
318 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
319 |
+
for idx, f in enumerate(self.transformer_in_features[::-1]):
|
320 |
+
x = features[f].float() # deformable detr does not support half precision
|
321 |
+
srcs.append(self.input_proj[idx](x))
|
322 |
+
pos.append(self.pe_layer(x))
|
323 |
+
|
324 |
+
y, spatial_shapes, level_start_index = self.transformer(srcs, pos)
|
325 |
+
bs = y.shape[0]
|
326 |
+
|
327 |
+
split_size_or_sections = [None] * self.transformer_num_feature_levels
|
328 |
+
for i in range(self.transformer_num_feature_levels):
|
329 |
+
if i < self.transformer_num_feature_levels - 1:
|
330 |
+
split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i]
|
331 |
+
else:
|
332 |
+
split_size_or_sections[i] = y.shape[1] - level_start_index[i]
|
333 |
+
y = torch.split(y, split_size_or_sections, dim=1)
|
334 |
+
|
335 |
+
out = []
|
336 |
+
multi_scale_features = []
|
337 |
+
num_cur_levels = 0
|
338 |
+
for i, z in enumerate(y):
|
339 |
+
out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1]))
|
340 |
+
|
341 |
+
# append `out` with extra FPN levels
|
342 |
+
# Reverse feature maps into top-down order (from low to high resolution)
|
343 |
+
for idx, f in enumerate(self.in_features[:self.num_fpn_levels][::-1]):
|
344 |
+
x = features[f].float()
|
345 |
+
lateral_conv = self.lateral_convs[idx]
|
346 |
+
output_conv = self.output_convs[idx]
|
347 |
+
cur_fpn = lateral_conv(x)
|
348 |
+
# Following FPN implementation, we use nearest upsampling here
|
349 |
+
y = cur_fpn + F.interpolate(out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False)
|
350 |
+
y = output_conv(y)
|
351 |
+
out.append(y)
|
352 |
+
|
353 |
+
for o in out:
|
354 |
+
if num_cur_levels < self.maskformer_num_feature_levels:
|
355 |
+
multi_scale_features.append(o)
|
356 |
+
num_cur_levels += 1
|
357 |
+
|
358 |
+
return self.mask_features(out[-1]), out[0], multi_scale_features
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/functions/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from .ms_deform_attn_func import MSDeformAttnFunction
|
13 |
+
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/functions/ms_deform_attn_func.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import print_function
|
14 |
+
from __future__ import division
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch.autograd import Function
|
19 |
+
from torch.autograd.function import once_differentiable
|
20 |
+
|
21 |
+
try:
|
22 |
+
import MultiScaleDeformableAttention as MSDA
|
23 |
+
except ModuleNotFoundError as e:
|
24 |
+
info_string = (
|
25 |
+
"\n\nPlease compile MultiScaleDeformableAttention CUDA op with the following commands:\n"
|
26 |
+
"\t`cd mask2former/modeling/pixel_decoder/ops`\n"
|
27 |
+
"\t`sh make.sh`\n"
|
28 |
+
)
|
29 |
+
raise ModuleNotFoundError(info_string)
|
30 |
+
|
31 |
+
|
32 |
+
class MSDeformAttnFunction(Function):
|
33 |
+
@staticmethod
|
34 |
+
def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step):
|
35 |
+
ctx.im2col_step = im2col_step
|
36 |
+
output = MSDA.ms_deform_attn_forward(
|
37 |
+
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step)
|
38 |
+
ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights)
|
39 |
+
return output
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
@once_differentiable
|
43 |
+
def backward(ctx, grad_output):
|
44 |
+
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors
|
45 |
+
grad_value, grad_sampling_loc, grad_attn_weight = \
|
46 |
+
MSDA.ms_deform_attn_backward(
|
47 |
+
value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step)
|
48 |
+
|
49 |
+
return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
|
50 |
+
|
51 |
+
|
52 |
+
def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):
|
53 |
+
# for debug and test only,
|
54 |
+
# need to use cuda version instead
|
55 |
+
N_, S_, M_, D_ = value.shape
|
56 |
+
_, Lq_, M_, L_, P_, _ = sampling_locations.shape
|
57 |
+
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
58 |
+
sampling_grids = 2 * sampling_locations - 1
|
59 |
+
sampling_value_list = []
|
60 |
+
for lid_, (H_, W_) in enumerate(value_spatial_shapes):
|
61 |
+
# N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
|
62 |
+
value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_)
|
63 |
+
# N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
|
64 |
+
sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)
|
65 |
+
# N_*M_, D_, Lq_, P_
|
66 |
+
sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,
|
67 |
+
mode='bilinear', padding_mode='zeros', align_corners=False)
|
68 |
+
sampling_value_list.append(sampling_value_l_)
|
69 |
+
# (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)
|
70 |
+
attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_)
|
71 |
+
output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_)
|
72 |
+
return output.transpose(1, 2).contiguous()
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/make.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
# ------------------------------------------------------------------------------------------------
|
3 |
+
# Deformable DETR
|
4 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------------------------------
|
7 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
# ------------------------------------------------------------------------------------------------
|
9 |
+
|
10 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
11 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
12 |
+
|
13 |
+
python setup.py build install
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/modules/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from .ms_deform_attn import MSDeformAttn
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import print_function
|
14 |
+
from __future__ import division
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
import math
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from torch.nn.init import xavier_uniform_, constant_
|
23 |
+
|
24 |
+
from ..functions import MSDeformAttnFunction
|
25 |
+
from ..functions.ms_deform_attn_func import ms_deform_attn_core_pytorch
|
26 |
+
|
27 |
+
|
28 |
+
def _is_power_of_2(n):
|
29 |
+
if (not isinstance(n, int)) or (n < 0):
|
30 |
+
raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
|
31 |
+
return (n & (n-1) == 0) and n != 0
|
32 |
+
|
33 |
+
|
34 |
+
class MSDeformAttn(nn.Module):
|
35 |
+
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
36 |
+
"""
|
37 |
+
Multi-Scale Deformable Attention Module
|
38 |
+
:param d_model hidden dimension
|
39 |
+
:param n_levels number of feature levels
|
40 |
+
:param n_heads number of attention heads
|
41 |
+
:param n_points number of sampling points per attention head per feature level
|
42 |
+
"""
|
43 |
+
super().__init__()
|
44 |
+
if d_model % n_heads != 0:
|
45 |
+
raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
|
46 |
+
_d_per_head = d_model // n_heads
|
47 |
+
# you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
|
48 |
+
if not _is_power_of_2(_d_per_head):
|
49 |
+
warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
|
50 |
+
"which is more efficient in our CUDA implementation.")
|
51 |
+
|
52 |
+
self.im2col_step = 128
|
53 |
+
|
54 |
+
self.d_model = d_model
|
55 |
+
self.n_levels = n_levels
|
56 |
+
self.n_heads = n_heads
|
57 |
+
self.n_points = n_points
|
58 |
+
|
59 |
+
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
60 |
+
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
61 |
+
self.value_proj = nn.Linear(d_model, d_model)
|
62 |
+
self.output_proj = nn.Linear(d_model, d_model)
|
63 |
+
|
64 |
+
self._reset_parameters()
|
65 |
+
|
66 |
+
def _reset_parameters(self):
|
67 |
+
constant_(self.sampling_offsets.weight.data, 0.)
|
68 |
+
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
69 |
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
70 |
+
grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
|
71 |
+
for i in range(self.n_points):
|
72 |
+
grid_init[:, :, i, :] *= i + 1
|
73 |
+
with torch.no_grad():
|
74 |
+
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
75 |
+
constant_(self.attention_weights.weight.data, 0.)
|
76 |
+
constant_(self.attention_weights.bias.data, 0.)
|
77 |
+
xavier_uniform_(self.value_proj.weight.data)
|
78 |
+
constant_(self.value_proj.bias.data, 0.)
|
79 |
+
xavier_uniform_(self.output_proj.weight.data)
|
80 |
+
constant_(self.output_proj.bias.data, 0.)
|
81 |
+
|
82 |
+
def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
|
83 |
+
"""
|
84 |
+
:param query (N, Length_{query}, C)
|
85 |
+
:param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
|
86 |
+
or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
|
87 |
+
:param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
|
88 |
+
:param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
89 |
+
:param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
|
90 |
+
:param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
|
91 |
+
|
92 |
+
:return output (N, Length_{query}, C)
|
93 |
+
"""
|
94 |
+
N, Len_q, _ = query.shape
|
95 |
+
N, Len_in, _ = input_flatten.shape
|
96 |
+
assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in
|
97 |
+
|
98 |
+
value = self.value_proj(input_flatten)
|
99 |
+
if input_padding_mask is not None:
|
100 |
+
value = value.masked_fill(input_padding_mask[..., None], float(0))
|
101 |
+
value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)
|
102 |
+
sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
103 |
+
attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)
|
104 |
+
attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)
|
105 |
+
# N, Len_q, n_heads, n_levels, n_points, 2
|
106 |
+
if reference_points.shape[-1] == 2:
|
107 |
+
offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
|
108 |
+
sampling_locations = reference_points[:, :, None, :, None, :] \
|
109 |
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
110 |
+
elif reference_points.shape[-1] == 4:
|
111 |
+
sampling_locations = reference_points[:, :, None, :, None, :2] \
|
112 |
+
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
113 |
+
else:
|
114 |
+
raise ValueError(
|
115 |
+
'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))
|
116 |
+
try:
|
117 |
+
output = MSDeformAttnFunction.apply(
|
118 |
+
value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
|
119 |
+
except:
|
120 |
+
# CPU
|
121 |
+
output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights)
|
122 |
+
# # For FLOPs calculation only
|
123 |
+
# output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights)
|
124 |
+
output = self.output_proj(output)
|
125 |
+
return output
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/setup.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
import os
|
13 |
+
import glob
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from torch.utils.cpp_extension import CUDA_HOME
|
18 |
+
from torch.utils.cpp_extension import CppExtension
|
19 |
+
from torch.utils.cpp_extension import CUDAExtension
|
20 |
+
|
21 |
+
from setuptools import find_packages
|
22 |
+
from setuptools import setup
|
23 |
+
|
24 |
+
requirements = ["torch", "torchvision"]
|
25 |
+
|
26 |
+
def get_extensions():
|
27 |
+
this_dir = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
extensions_dir = os.path.join(this_dir, "src")
|
29 |
+
|
30 |
+
main_file = glob.glob(os.path.join(extensions_dir, "*.cpp"))
|
31 |
+
source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp"))
|
32 |
+
source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu"))
|
33 |
+
|
34 |
+
sources = main_file + source_cpu
|
35 |
+
extension = CppExtension
|
36 |
+
extra_compile_args = {"cxx": []}
|
37 |
+
define_macros = []
|
38 |
+
|
39 |
+
# Force cuda since torch ask for a device, not if cuda is in fact available.
|
40 |
+
if (os.environ.get('FORCE_CUDA') or torch.cuda.is_available()) and CUDA_HOME is not None:
|
41 |
+
extension = CUDAExtension
|
42 |
+
sources += source_cuda
|
43 |
+
define_macros += [("WITH_CUDA", None)]
|
44 |
+
extra_compile_args["nvcc"] = [
|
45 |
+
"-DCUDA_HAS_FP16=1",
|
46 |
+
"-D__CUDA_NO_HALF_OPERATORS__",
|
47 |
+
"-D__CUDA_NO_HALF_CONVERSIONS__",
|
48 |
+
"-D__CUDA_NO_HALF2_OPERATORS__",
|
49 |
+
]
|
50 |
+
else:
|
51 |
+
if CUDA_HOME is None:
|
52 |
+
raise NotImplementedError('CUDA_HOME is None. Please set environment variable CUDA_HOME.')
|
53 |
+
else:
|
54 |
+
raise NotImplementedError('No CUDA runtime is found. Please set FORCE_CUDA=1 or test it by running torch.cuda.is_available().')
|
55 |
+
|
56 |
+
sources = [os.path.join(extensions_dir, s) for s in sources]
|
57 |
+
include_dirs = [extensions_dir]
|
58 |
+
ext_modules = [
|
59 |
+
extension(
|
60 |
+
"MultiScaleDeformableAttention",
|
61 |
+
sources,
|
62 |
+
include_dirs=include_dirs,
|
63 |
+
define_macros=define_macros,
|
64 |
+
extra_compile_args=extra_compile_args,
|
65 |
+
)
|
66 |
+
]
|
67 |
+
return ext_modules
|
68 |
+
|
69 |
+
setup(
|
70 |
+
name="MultiScaleDeformableAttention",
|
71 |
+
version="1.0",
|
72 |
+
author="Weijie Su",
|
73 |
+
url="https://github.com/fundamentalvision/Deformable-DETR",
|
74 |
+
description="PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention",
|
75 |
+
packages=find_packages(exclude=("configs", "tests",)),
|
76 |
+
ext_modules=get_extensions(),
|
77 |
+
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
|
78 |
+
)
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.cpp
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include <vector>
|
17 |
+
|
18 |
+
#include <ATen/ATen.h>
|
19 |
+
#include <ATen/cuda/CUDAContext.h>
|
20 |
+
|
21 |
+
|
22 |
+
at::Tensor
|
23 |
+
ms_deform_attn_cpu_forward(
|
24 |
+
const at::Tensor &value,
|
25 |
+
const at::Tensor &spatial_shapes,
|
26 |
+
const at::Tensor &level_start_index,
|
27 |
+
const at::Tensor &sampling_loc,
|
28 |
+
const at::Tensor &attn_weight,
|
29 |
+
const int im2col_step)
|
30 |
+
{
|
31 |
+
AT_ERROR("Not implement on cpu");
|
32 |
+
}
|
33 |
+
|
34 |
+
std::vector<at::Tensor>
|
35 |
+
ms_deform_attn_cpu_backward(
|
36 |
+
const at::Tensor &value,
|
37 |
+
const at::Tensor &spatial_shapes,
|
38 |
+
const at::Tensor &level_start_index,
|
39 |
+
const at::Tensor &sampling_loc,
|
40 |
+
const at::Tensor &attn_weight,
|
41 |
+
const at::Tensor &grad_output,
|
42 |
+
const int im2col_step)
|
43 |
+
{
|
44 |
+
AT_ERROR("Not implement on cpu");
|
45 |
+
}
|
46 |
+
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cpu/ms_deform_attn_cpu.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#pragma once
|
17 |
+
#include <torch/extension.h>
|
18 |
+
|
19 |
+
at::Tensor
|
20 |
+
ms_deform_attn_cpu_forward(
|
21 |
+
const at::Tensor &value,
|
22 |
+
const at::Tensor &spatial_shapes,
|
23 |
+
const at::Tensor &level_start_index,
|
24 |
+
const at::Tensor &sampling_loc,
|
25 |
+
const at::Tensor &attn_weight,
|
26 |
+
const int im2col_step);
|
27 |
+
|
28 |
+
std::vector<at::Tensor>
|
29 |
+
ms_deform_attn_cpu_backward(
|
30 |
+
const at::Tensor &value,
|
31 |
+
const at::Tensor &spatial_shapes,
|
32 |
+
const at::Tensor &level_start_index,
|
33 |
+
const at::Tensor &sampling_loc,
|
34 |
+
const at::Tensor &attn_weight,
|
35 |
+
const at::Tensor &grad_output,
|
36 |
+
const int im2col_step);
|
37 |
+
|
38 |
+
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.cu
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include <vector>
|
17 |
+
#include "cuda/ms_deform_im2col_cuda.cuh"
|
18 |
+
|
19 |
+
#include <ATen/ATen.h>
|
20 |
+
#include <ATen/cuda/CUDAContext.h>
|
21 |
+
#include <cuda.h>
|
22 |
+
#include <cuda_runtime.h>
|
23 |
+
|
24 |
+
|
25 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
26 |
+
const at::Tensor &value,
|
27 |
+
const at::Tensor &spatial_shapes,
|
28 |
+
const at::Tensor &level_start_index,
|
29 |
+
const at::Tensor &sampling_loc,
|
30 |
+
const at::Tensor &attn_weight,
|
31 |
+
const int im2col_step)
|
32 |
+
{
|
33 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
34 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
35 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
36 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
37 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
38 |
+
|
39 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
40 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
41 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
42 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
43 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
44 |
+
|
45 |
+
const int batch = value.size(0);
|
46 |
+
const int spatial_size = value.size(1);
|
47 |
+
const int num_heads = value.size(2);
|
48 |
+
const int channels = value.size(3);
|
49 |
+
|
50 |
+
const int num_levels = spatial_shapes.size(0);
|
51 |
+
|
52 |
+
const int num_query = sampling_loc.size(1);
|
53 |
+
const int num_point = sampling_loc.size(4);
|
54 |
+
|
55 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
56 |
+
|
57 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
58 |
+
|
59 |
+
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
60 |
+
|
61 |
+
const int batch_n = im2col_step_;
|
62 |
+
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
63 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
64 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
65 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
66 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
67 |
+
{
|
68 |
+
auto columns = output_n.select(0, n);
|
69 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
70 |
+
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
71 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
72 |
+
spatial_shapes.data<int64_t>(),
|
73 |
+
level_start_index.data<int64_t>(),
|
74 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
75 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
76 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
77 |
+
columns.data<scalar_t>());
|
78 |
+
|
79 |
+
}));
|
80 |
+
}
|
81 |
+
|
82 |
+
output = output.view({batch, num_query, num_heads*channels});
|
83 |
+
|
84 |
+
return output;
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
89 |
+
const at::Tensor &value,
|
90 |
+
const at::Tensor &spatial_shapes,
|
91 |
+
const at::Tensor &level_start_index,
|
92 |
+
const at::Tensor &sampling_loc,
|
93 |
+
const at::Tensor &attn_weight,
|
94 |
+
const at::Tensor &grad_output,
|
95 |
+
const int im2col_step)
|
96 |
+
{
|
97 |
+
|
98 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
99 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
100 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
101 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
102 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
103 |
+
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
104 |
+
|
105 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
106 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
107 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
108 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
109 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
110 |
+
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
111 |
+
|
112 |
+
const int batch = value.size(0);
|
113 |
+
const int spatial_size = value.size(1);
|
114 |
+
const int num_heads = value.size(2);
|
115 |
+
const int channels = value.size(3);
|
116 |
+
|
117 |
+
const int num_levels = spatial_shapes.size(0);
|
118 |
+
|
119 |
+
const int num_query = sampling_loc.size(1);
|
120 |
+
const int num_point = sampling_loc.size(4);
|
121 |
+
|
122 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
123 |
+
|
124 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
125 |
+
|
126 |
+
auto grad_value = at::zeros_like(value);
|
127 |
+
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
128 |
+
auto grad_attn_weight = at::zeros_like(attn_weight);
|
129 |
+
|
130 |
+
const int batch_n = im2col_step_;
|
131 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
132 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
133 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
134 |
+
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
135 |
+
|
136 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
137 |
+
{
|
138 |
+
auto grad_output_g = grad_output_n.select(0, n);
|
139 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
140 |
+
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
141 |
+
grad_output_g.data<scalar_t>(),
|
142 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
143 |
+
spatial_shapes.data<int64_t>(),
|
144 |
+
level_start_index.data<int64_t>(),
|
145 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
146 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
147 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
148 |
+
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
149 |
+
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
150 |
+
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
151 |
+
|
152 |
+
}));
|
153 |
+
}
|
154 |
+
|
155 |
+
return {
|
156 |
+
grad_value, grad_sampling_loc, grad_attn_weight
|
157 |
+
};
|
158 |
+
}
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#pragma once
|
17 |
+
#include <torch/extension.h>
|
18 |
+
|
19 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
20 |
+
const at::Tensor &value,
|
21 |
+
const at::Tensor &spatial_shapes,
|
22 |
+
const at::Tensor &level_start_index,
|
23 |
+
const at::Tensor &sampling_loc,
|
24 |
+
const at::Tensor &attn_weight,
|
25 |
+
const int im2col_step);
|
26 |
+
|
27 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
28 |
+
const at::Tensor &value,
|
29 |
+
const at::Tensor &spatial_shapes,
|
30 |
+
const at::Tensor &level_start_index,
|
31 |
+
const at::Tensor &sampling_loc,
|
32 |
+
const at::Tensor &attn_weight,
|
33 |
+
const at::Tensor &grad_output,
|
34 |
+
const int im2col_step);
|
35 |
+
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_im2col_cuda.cuh
ADDED
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************
|
7 |
+
* Modified from DCN (https://github.com/msracver/Deformable-ConvNets)
|
8 |
+
* Copyright (c) 2018 Microsoft
|
9 |
+
**************************************************************************
|
10 |
+
*/
|
11 |
+
|
12 |
+
/*!
|
13 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
14 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <cstdio>
|
18 |
+
#include <algorithm>
|
19 |
+
#include <cstring>
|
20 |
+
|
21 |
+
#include <ATen/ATen.h>
|
22 |
+
#include <ATen/cuda/CUDAContext.h>
|
23 |
+
|
24 |
+
#include <THC/THCAtomics.cuh>
|
25 |
+
|
26 |
+
#define CUDA_KERNEL_LOOP(i, n) \
|
27 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
|
28 |
+
i < (n); \
|
29 |
+
i += blockDim.x * gridDim.x)
|
30 |
+
|
31 |
+
const int CUDA_NUM_THREADS = 1024;
|
32 |
+
inline int GET_BLOCKS(const int N, const int num_threads)
|
33 |
+
{
|
34 |
+
return (N + num_threads - 1) / num_threads;
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
template <typename scalar_t>
|
39 |
+
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
|
40 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
41 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c)
|
42 |
+
{
|
43 |
+
const int h_low = floor(h);
|
44 |
+
const int w_low = floor(w);
|
45 |
+
const int h_high = h_low + 1;
|
46 |
+
const int w_high = w_low + 1;
|
47 |
+
|
48 |
+
const scalar_t lh = h - h_low;
|
49 |
+
const scalar_t lw = w - w_low;
|
50 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
51 |
+
|
52 |
+
const int w_stride = nheads * channels;
|
53 |
+
const int h_stride = width * w_stride;
|
54 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
55 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
56 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
57 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
58 |
+
const int base_ptr = m * channels + c;
|
59 |
+
|
60 |
+
scalar_t v1 = 0;
|
61 |
+
if (h_low >= 0 && w_low >= 0)
|
62 |
+
{
|
63 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
64 |
+
v1 = bottom_data[ptr1];
|
65 |
+
}
|
66 |
+
scalar_t v2 = 0;
|
67 |
+
if (h_low >= 0 && w_high <= width - 1)
|
68 |
+
{
|
69 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
70 |
+
v2 = bottom_data[ptr2];
|
71 |
+
}
|
72 |
+
scalar_t v3 = 0;
|
73 |
+
if (h_high <= height - 1 && w_low >= 0)
|
74 |
+
{
|
75 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
76 |
+
v3 = bottom_data[ptr3];
|
77 |
+
}
|
78 |
+
scalar_t v4 = 0;
|
79 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
80 |
+
{
|
81 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
82 |
+
v4 = bottom_data[ptr4];
|
83 |
+
}
|
84 |
+
|
85 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
86 |
+
|
87 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
88 |
+
return val;
|
89 |
+
}
|
90 |
+
|
91 |
+
|
92 |
+
template <typename scalar_t>
|
93 |
+
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
|
94 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
95 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
96 |
+
const scalar_t &top_grad,
|
97 |
+
const scalar_t &attn_weight,
|
98 |
+
scalar_t* &grad_value,
|
99 |
+
scalar_t* grad_sampling_loc,
|
100 |
+
scalar_t* grad_attn_weight)
|
101 |
+
{
|
102 |
+
const int h_low = floor(h);
|
103 |
+
const int w_low = floor(w);
|
104 |
+
const int h_high = h_low + 1;
|
105 |
+
const int w_high = w_low + 1;
|
106 |
+
|
107 |
+
const scalar_t lh = h - h_low;
|
108 |
+
const scalar_t lw = w - w_low;
|
109 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
110 |
+
|
111 |
+
const int w_stride = nheads * channels;
|
112 |
+
const int h_stride = width * w_stride;
|
113 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
114 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
115 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
116 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
117 |
+
const int base_ptr = m * channels + c;
|
118 |
+
|
119 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
120 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
121 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
122 |
+
|
123 |
+
scalar_t v1 = 0;
|
124 |
+
if (h_low >= 0 && w_low >= 0)
|
125 |
+
{
|
126 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
127 |
+
v1 = bottom_data[ptr1];
|
128 |
+
grad_h_weight -= hw * v1;
|
129 |
+
grad_w_weight -= hh * v1;
|
130 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
131 |
+
}
|
132 |
+
scalar_t v2 = 0;
|
133 |
+
if (h_low >= 0 && w_high <= width - 1)
|
134 |
+
{
|
135 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
136 |
+
v2 = bottom_data[ptr2];
|
137 |
+
grad_h_weight -= lw * v2;
|
138 |
+
grad_w_weight += hh * v2;
|
139 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
140 |
+
}
|
141 |
+
scalar_t v3 = 0;
|
142 |
+
if (h_high <= height - 1 && w_low >= 0)
|
143 |
+
{
|
144 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
145 |
+
v3 = bottom_data[ptr3];
|
146 |
+
grad_h_weight += hw * v3;
|
147 |
+
grad_w_weight -= lh * v3;
|
148 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
149 |
+
}
|
150 |
+
scalar_t v4 = 0;
|
151 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
152 |
+
{
|
153 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
154 |
+
v4 = bottom_data[ptr4];
|
155 |
+
grad_h_weight += lw * v4;
|
156 |
+
grad_w_weight += lh * v4;
|
157 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
158 |
+
}
|
159 |
+
|
160 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
161 |
+
*grad_attn_weight = top_grad * val;
|
162 |
+
*grad_sampling_loc = width * grad_w_weight * top_grad_value;
|
163 |
+
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
template <typename scalar_t>
|
168 |
+
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
|
169 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
170 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
171 |
+
const scalar_t &top_grad,
|
172 |
+
const scalar_t &attn_weight,
|
173 |
+
scalar_t* &grad_value,
|
174 |
+
scalar_t* grad_sampling_loc,
|
175 |
+
scalar_t* grad_attn_weight)
|
176 |
+
{
|
177 |
+
const int h_low = floor(h);
|
178 |
+
const int w_low = floor(w);
|
179 |
+
const int h_high = h_low + 1;
|
180 |
+
const int w_high = w_low + 1;
|
181 |
+
|
182 |
+
const scalar_t lh = h - h_low;
|
183 |
+
const scalar_t lw = w - w_low;
|
184 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
185 |
+
|
186 |
+
const int w_stride = nheads * channels;
|
187 |
+
const int h_stride = width * w_stride;
|
188 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
189 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
190 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
191 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
192 |
+
const int base_ptr = m * channels + c;
|
193 |
+
|
194 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
195 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
196 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
197 |
+
|
198 |
+
scalar_t v1 = 0;
|
199 |
+
if (h_low >= 0 && w_low >= 0)
|
200 |
+
{
|
201 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
202 |
+
v1 = bottom_data[ptr1];
|
203 |
+
grad_h_weight -= hw * v1;
|
204 |
+
grad_w_weight -= hh * v1;
|
205 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
206 |
+
}
|
207 |
+
scalar_t v2 = 0;
|
208 |
+
if (h_low >= 0 && w_high <= width - 1)
|
209 |
+
{
|
210 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
211 |
+
v2 = bottom_data[ptr2];
|
212 |
+
grad_h_weight -= lw * v2;
|
213 |
+
grad_w_weight += hh * v2;
|
214 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
215 |
+
}
|
216 |
+
scalar_t v3 = 0;
|
217 |
+
if (h_high <= height - 1 && w_low >= 0)
|
218 |
+
{
|
219 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
220 |
+
v3 = bottom_data[ptr3];
|
221 |
+
grad_h_weight += hw * v3;
|
222 |
+
grad_w_weight -= lh * v3;
|
223 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
224 |
+
}
|
225 |
+
scalar_t v4 = 0;
|
226 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
227 |
+
{
|
228 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
229 |
+
v4 = bottom_data[ptr4];
|
230 |
+
grad_h_weight += lw * v4;
|
231 |
+
grad_w_weight += lh * v4;
|
232 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
233 |
+
}
|
234 |
+
|
235 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
236 |
+
atomicAdd(grad_attn_weight, top_grad * val);
|
237 |
+
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
|
238 |
+
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
|
239 |
+
}
|
240 |
+
|
241 |
+
|
242 |
+
template <typename scalar_t>
|
243 |
+
__global__ void ms_deformable_im2col_gpu_kernel(const int n,
|
244 |
+
const scalar_t *data_value,
|
245 |
+
const int64_t *data_spatial_shapes,
|
246 |
+
const int64_t *data_level_start_index,
|
247 |
+
const scalar_t *data_sampling_loc,
|
248 |
+
const scalar_t *data_attn_weight,
|
249 |
+
const int batch_size,
|
250 |
+
const int spatial_size,
|
251 |
+
const int num_heads,
|
252 |
+
const int channels,
|
253 |
+
const int num_levels,
|
254 |
+
const int num_query,
|
255 |
+
const int num_point,
|
256 |
+
scalar_t *data_col)
|
257 |
+
{
|
258 |
+
CUDA_KERNEL_LOOP(index, n)
|
259 |
+
{
|
260 |
+
int _temp = index;
|
261 |
+
const int c_col = _temp % channels;
|
262 |
+
_temp /= channels;
|
263 |
+
const int sampling_index = _temp;
|
264 |
+
const int m_col = _temp % num_heads;
|
265 |
+
_temp /= num_heads;
|
266 |
+
const int q_col = _temp % num_query;
|
267 |
+
_temp /= num_query;
|
268 |
+
const int b_col = _temp;
|
269 |
+
|
270 |
+
scalar_t *data_col_ptr = data_col + index;
|
271 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
272 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
273 |
+
const int qid_stride = num_heads * channels;
|
274 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
275 |
+
scalar_t col = 0;
|
276 |
+
|
277 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
278 |
+
{
|
279 |
+
const int level_start_id = data_level_start_index[l_col];
|
280 |
+
const int spatial_h_ptr = l_col << 1;
|
281 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
282 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
283 |
+
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
|
284 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
285 |
+
{
|
286 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
287 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
288 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
289 |
+
|
290 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
291 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
292 |
+
|
293 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
294 |
+
{
|
295 |
+
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
|
296 |
+
}
|
297 |
+
|
298 |
+
data_weight_ptr += 1;
|
299 |
+
data_loc_w_ptr += 2;
|
300 |
+
}
|
301 |
+
}
|
302 |
+
*data_col_ptr = col;
|
303 |
+
}
|
304 |
+
}
|
305 |
+
|
306 |
+
template <typename scalar_t, unsigned int blockSize>
|
307 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
|
308 |
+
const scalar_t *grad_col,
|
309 |
+
const scalar_t *data_value,
|
310 |
+
const int64_t *data_spatial_shapes,
|
311 |
+
const int64_t *data_level_start_index,
|
312 |
+
const scalar_t *data_sampling_loc,
|
313 |
+
const scalar_t *data_attn_weight,
|
314 |
+
const int batch_size,
|
315 |
+
const int spatial_size,
|
316 |
+
const int num_heads,
|
317 |
+
const int channels,
|
318 |
+
const int num_levels,
|
319 |
+
const int num_query,
|
320 |
+
const int num_point,
|
321 |
+
scalar_t *grad_value,
|
322 |
+
scalar_t *grad_sampling_loc,
|
323 |
+
scalar_t *grad_attn_weight)
|
324 |
+
{
|
325 |
+
CUDA_KERNEL_LOOP(index, n)
|
326 |
+
{
|
327 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
328 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
329 |
+
unsigned int tid = threadIdx.x;
|
330 |
+
int _temp = index;
|
331 |
+
const int c_col = _temp % channels;
|
332 |
+
_temp /= channels;
|
333 |
+
const int sampling_index = _temp;
|
334 |
+
const int m_col = _temp % num_heads;
|
335 |
+
_temp /= num_heads;
|
336 |
+
const int q_col = _temp % num_query;
|
337 |
+
_temp /= num_query;
|
338 |
+
const int b_col = _temp;
|
339 |
+
|
340 |
+
const scalar_t top_grad = grad_col[index];
|
341 |
+
|
342 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
343 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
344 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
345 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
346 |
+
grad_attn_weight += grad_sampling_ptr;
|
347 |
+
const int grad_weight_stride = 1;
|
348 |
+
const int grad_loc_stride = 2;
|
349 |
+
const int qid_stride = num_heads * channels;
|
350 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
351 |
+
|
352 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
353 |
+
{
|
354 |
+
const int level_start_id = data_level_start_index[l_col];
|
355 |
+
const int spatial_h_ptr = l_col << 1;
|
356 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
357 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
358 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
359 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
360 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
361 |
+
|
362 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
363 |
+
{
|
364 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
365 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
366 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
367 |
+
|
368 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
369 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
370 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
371 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
372 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
373 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
374 |
+
{
|
375 |
+
ms_deform_attn_col2im_bilinear(
|
376 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
377 |
+
top_grad, weight, grad_value_ptr,
|
378 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
379 |
+
}
|
380 |
+
|
381 |
+
__syncthreads();
|
382 |
+
if (tid == 0)
|
383 |
+
{
|
384 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
385 |
+
int sid=2;
|
386 |
+
for (unsigned int tid = 1; tid < blockSize; ++tid)
|
387 |
+
{
|
388 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
389 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
390 |
+
_grad_a += cache_grad_attn_weight[tid];
|
391 |
+
sid += 2;
|
392 |
+
}
|
393 |
+
|
394 |
+
|
395 |
+
*grad_sampling_loc = _grad_w;
|
396 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
397 |
+
*grad_attn_weight = _grad_a;
|
398 |
+
}
|
399 |
+
__syncthreads();
|
400 |
+
|
401 |
+
data_weight_ptr += 1;
|
402 |
+
data_loc_w_ptr += 2;
|
403 |
+
grad_attn_weight += grad_weight_stride;
|
404 |
+
grad_sampling_loc += grad_loc_stride;
|
405 |
+
}
|
406 |
+
}
|
407 |
+
}
|
408 |
+
}
|
409 |
+
|
410 |
+
|
411 |
+
template <typename scalar_t, unsigned int blockSize>
|
412 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
|
413 |
+
const scalar_t *grad_col,
|
414 |
+
const scalar_t *data_value,
|
415 |
+
const int64_t *data_spatial_shapes,
|
416 |
+
const int64_t *data_level_start_index,
|
417 |
+
const scalar_t *data_sampling_loc,
|
418 |
+
const scalar_t *data_attn_weight,
|
419 |
+
const int batch_size,
|
420 |
+
const int spatial_size,
|
421 |
+
const int num_heads,
|
422 |
+
const int channels,
|
423 |
+
const int num_levels,
|
424 |
+
const int num_query,
|
425 |
+
const int num_point,
|
426 |
+
scalar_t *grad_value,
|
427 |
+
scalar_t *grad_sampling_loc,
|
428 |
+
scalar_t *grad_attn_weight)
|
429 |
+
{
|
430 |
+
CUDA_KERNEL_LOOP(index, n)
|
431 |
+
{
|
432 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
433 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
434 |
+
unsigned int tid = threadIdx.x;
|
435 |
+
int _temp = index;
|
436 |
+
const int c_col = _temp % channels;
|
437 |
+
_temp /= channels;
|
438 |
+
const int sampling_index = _temp;
|
439 |
+
const int m_col = _temp % num_heads;
|
440 |
+
_temp /= num_heads;
|
441 |
+
const int q_col = _temp % num_query;
|
442 |
+
_temp /= num_query;
|
443 |
+
const int b_col = _temp;
|
444 |
+
|
445 |
+
const scalar_t top_grad = grad_col[index];
|
446 |
+
|
447 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
448 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
449 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
450 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
451 |
+
grad_attn_weight += grad_sampling_ptr;
|
452 |
+
const int grad_weight_stride = 1;
|
453 |
+
const int grad_loc_stride = 2;
|
454 |
+
const int qid_stride = num_heads * channels;
|
455 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
456 |
+
|
457 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
458 |
+
{
|
459 |
+
const int level_start_id = data_level_start_index[l_col];
|
460 |
+
const int spatial_h_ptr = l_col << 1;
|
461 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
462 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
463 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
464 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
465 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
466 |
+
|
467 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
468 |
+
{
|
469 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
470 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
471 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
472 |
+
|
473 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
474 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
475 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
476 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
477 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
478 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
479 |
+
{
|
480 |
+
ms_deform_attn_col2im_bilinear(
|
481 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
482 |
+
top_grad, weight, grad_value_ptr,
|
483 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
484 |
+
}
|
485 |
+
|
486 |
+
__syncthreads();
|
487 |
+
|
488 |
+
for (unsigned int s=blockSize/2; s>0; s>>=1)
|
489 |
+
{
|
490 |
+
if (tid < s) {
|
491 |
+
const unsigned int xid1 = tid << 1;
|
492 |
+
const unsigned int xid2 = (tid + s) << 1;
|
493 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
494 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
495 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
496 |
+
}
|
497 |
+
__syncthreads();
|
498 |
+
}
|
499 |
+
|
500 |
+
if (tid == 0)
|
501 |
+
{
|
502 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
503 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
504 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
505 |
+
}
|
506 |
+
__syncthreads();
|
507 |
+
|
508 |
+
data_weight_ptr += 1;
|
509 |
+
data_loc_w_ptr += 2;
|
510 |
+
grad_attn_weight += grad_weight_stride;
|
511 |
+
grad_sampling_loc += grad_loc_stride;
|
512 |
+
}
|
513 |
+
}
|
514 |
+
}
|
515 |
+
}
|
516 |
+
|
517 |
+
|
518 |
+
template <typename scalar_t>
|
519 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
|
520 |
+
const scalar_t *grad_col,
|
521 |
+
const scalar_t *data_value,
|
522 |
+
const int64_t *data_spatial_shapes,
|
523 |
+
const int64_t *data_level_start_index,
|
524 |
+
const scalar_t *data_sampling_loc,
|
525 |
+
const scalar_t *data_attn_weight,
|
526 |
+
const int batch_size,
|
527 |
+
const int spatial_size,
|
528 |
+
const int num_heads,
|
529 |
+
const int channels,
|
530 |
+
const int num_levels,
|
531 |
+
const int num_query,
|
532 |
+
const int num_point,
|
533 |
+
scalar_t *grad_value,
|
534 |
+
scalar_t *grad_sampling_loc,
|
535 |
+
scalar_t *grad_attn_weight)
|
536 |
+
{
|
537 |
+
CUDA_KERNEL_LOOP(index, n)
|
538 |
+
{
|
539 |
+
extern __shared__ int _s[];
|
540 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
541 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
542 |
+
unsigned int tid = threadIdx.x;
|
543 |
+
int _temp = index;
|
544 |
+
const int c_col = _temp % channels;
|
545 |
+
_temp /= channels;
|
546 |
+
const int sampling_index = _temp;
|
547 |
+
const int m_col = _temp % num_heads;
|
548 |
+
_temp /= num_heads;
|
549 |
+
const int q_col = _temp % num_query;
|
550 |
+
_temp /= num_query;
|
551 |
+
const int b_col = _temp;
|
552 |
+
|
553 |
+
const scalar_t top_grad = grad_col[index];
|
554 |
+
|
555 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
556 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
557 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
558 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
559 |
+
grad_attn_weight += grad_sampling_ptr;
|
560 |
+
const int grad_weight_stride = 1;
|
561 |
+
const int grad_loc_stride = 2;
|
562 |
+
const int qid_stride = num_heads * channels;
|
563 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
564 |
+
|
565 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
566 |
+
{
|
567 |
+
const int level_start_id = data_level_start_index[l_col];
|
568 |
+
const int spatial_h_ptr = l_col << 1;
|
569 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
570 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
571 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
572 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
573 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
574 |
+
|
575 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
576 |
+
{
|
577 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
578 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
579 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
580 |
+
|
581 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
582 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
583 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
584 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
585 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
586 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
587 |
+
{
|
588 |
+
ms_deform_attn_col2im_bilinear(
|
589 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
590 |
+
top_grad, weight, grad_value_ptr,
|
591 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
592 |
+
}
|
593 |
+
|
594 |
+
__syncthreads();
|
595 |
+
if (tid == 0)
|
596 |
+
{
|
597 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
598 |
+
int sid=2;
|
599 |
+
for (unsigned int tid = 1; tid < blockDim.x; ++tid)
|
600 |
+
{
|
601 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
602 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
603 |
+
_grad_a += cache_grad_attn_weight[tid];
|
604 |
+
sid += 2;
|
605 |
+
}
|
606 |
+
|
607 |
+
|
608 |
+
*grad_sampling_loc = _grad_w;
|
609 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
610 |
+
*grad_attn_weight = _grad_a;
|
611 |
+
}
|
612 |
+
__syncthreads();
|
613 |
+
|
614 |
+
data_weight_ptr += 1;
|
615 |
+
data_loc_w_ptr += 2;
|
616 |
+
grad_attn_weight += grad_weight_stride;
|
617 |
+
grad_sampling_loc += grad_loc_stride;
|
618 |
+
}
|
619 |
+
}
|
620 |
+
}
|
621 |
+
}
|
622 |
+
|
623 |
+
template <typename scalar_t>
|
624 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
|
625 |
+
const scalar_t *grad_col,
|
626 |
+
const scalar_t *data_value,
|
627 |
+
const int64_t *data_spatial_shapes,
|
628 |
+
const int64_t *data_level_start_index,
|
629 |
+
const scalar_t *data_sampling_loc,
|
630 |
+
const scalar_t *data_attn_weight,
|
631 |
+
const int batch_size,
|
632 |
+
const int spatial_size,
|
633 |
+
const int num_heads,
|
634 |
+
const int channels,
|
635 |
+
const int num_levels,
|
636 |
+
const int num_query,
|
637 |
+
const int num_point,
|
638 |
+
scalar_t *grad_value,
|
639 |
+
scalar_t *grad_sampling_loc,
|
640 |
+
scalar_t *grad_attn_weight)
|
641 |
+
{
|
642 |
+
CUDA_KERNEL_LOOP(index, n)
|
643 |
+
{
|
644 |
+
extern __shared__ int _s[];
|
645 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
646 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
647 |
+
unsigned int tid = threadIdx.x;
|
648 |
+
int _temp = index;
|
649 |
+
const int c_col = _temp % channels;
|
650 |
+
_temp /= channels;
|
651 |
+
const int sampling_index = _temp;
|
652 |
+
const int m_col = _temp % num_heads;
|
653 |
+
_temp /= num_heads;
|
654 |
+
const int q_col = _temp % num_query;
|
655 |
+
_temp /= num_query;
|
656 |
+
const int b_col = _temp;
|
657 |
+
|
658 |
+
const scalar_t top_grad = grad_col[index];
|
659 |
+
|
660 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
661 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
662 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
663 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
664 |
+
grad_attn_weight += grad_sampling_ptr;
|
665 |
+
const int grad_weight_stride = 1;
|
666 |
+
const int grad_loc_stride = 2;
|
667 |
+
const int qid_stride = num_heads * channels;
|
668 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
669 |
+
|
670 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
671 |
+
{
|
672 |
+
const int level_start_id = data_level_start_index[l_col];
|
673 |
+
const int spatial_h_ptr = l_col << 1;
|
674 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
675 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
676 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
677 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
678 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
679 |
+
|
680 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
681 |
+
{
|
682 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
683 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
684 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
685 |
+
|
686 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
687 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
688 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
689 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
690 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
691 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
692 |
+
{
|
693 |
+
ms_deform_attn_col2im_bilinear(
|
694 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
695 |
+
top_grad, weight, grad_value_ptr,
|
696 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
697 |
+
}
|
698 |
+
|
699 |
+
__syncthreads();
|
700 |
+
|
701 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
702 |
+
{
|
703 |
+
if (tid < s) {
|
704 |
+
const unsigned int xid1 = tid << 1;
|
705 |
+
const unsigned int xid2 = (tid + s) << 1;
|
706 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
707 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
708 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
709 |
+
if (tid + (s << 1) < spre)
|
710 |
+
{
|
711 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
712 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
713 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
714 |
+
}
|
715 |
+
}
|
716 |
+
__syncthreads();
|
717 |
+
}
|
718 |
+
|
719 |
+
if (tid == 0)
|
720 |
+
{
|
721 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
722 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
723 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
724 |
+
}
|
725 |
+
__syncthreads();
|
726 |
+
|
727 |
+
data_weight_ptr += 1;
|
728 |
+
data_loc_w_ptr += 2;
|
729 |
+
grad_attn_weight += grad_weight_stride;
|
730 |
+
grad_sampling_loc += grad_loc_stride;
|
731 |
+
}
|
732 |
+
}
|
733 |
+
}
|
734 |
+
}
|
735 |
+
|
736 |
+
template <typename scalar_t>
|
737 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
|
738 |
+
const scalar_t *grad_col,
|
739 |
+
const scalar_t *data_value,
|
740 |
+
const int64_t *data_spatial_shapes,
|
741 |
+
const int64_t *data_level_start_index,
|
742 |
+
const scalar_t *data_sampling_loc,
|
743 |
+
const scalar_t *data_attn_weight,
|
744 |
+
const int batch_size,
|
745 |
+
const int spatial_size,
|
746 |
+
const int num_heads,
|
747 |
+
const int channels,
|
748 |
+
const int num_levels,
|
749 |
+
const int num_query,
|
750 |
+
const int num_point,
|
751 |
+
scalar_t *grad_value,
|
752 |
+
scalar_t *grad_sampling_loc,
|
753 |
+
scalar_t *grad_attn_weight)
|
754 |
+
{
|
755 |
+
CUDA_KERNEL_LOOP(index, n)
|
756 |
+
{
|
757 |
+
extern __shared__ int _s[];
|
758 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
759 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
760 |
+
unsigned int tid = threadIdx.x;
|
761 |
+
int _temp = index;
|
762 |
+
const int c_col = _temp % channels;
|
763 |
+
_temp /= channels;
|
764 |
+
const int sampling_index = _temp;
|
765 |
+
const int m_col = _temp % num_heads;
|
766 |
+
_temp /= num_heads;
|
767 |
+
const int q_col = _temp % num_query;
|
768 |
+
_temp /= num_query;
|
769 |
+
const int b_col = _temp;
|
770 |
+
|
771 |
+
const scalar_t top_grad = grad_col[index];
|
772 |
+
|
773 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
774 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
775 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
776 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
777 |
+
grad_attn_weight += grad_sampling_ptr;
|
778 |
+
const int grad_weight_stride = 1;
|
779 |
+
const int grad_loc_stride = 2;
|
780 |
+
const int qid_stride = num_heads * channels;
|
781 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
782 |
+
|
783 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
784 |
+
{
|
785 |
+
const int level_start_id = data_level_start_index[l_col];
|
786 |
+
const int spatial_h_ptr = l_col << 1;
|
787 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
788 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
789 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
790 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
791 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
792 |
+
|
793 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
794 |
+
{
|
795 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
796 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
797 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
798 |
+
|
799 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
800 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
801 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
802 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
803 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
804 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
805 |
+
{
|
806 |
+
ms_deform_attn_col2im_bilinear(
|
807 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
808 |
+
top_grad, weight, grad_value_ptr,
|
809 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
810 |
+
}
|
811 |
+
|
812 |
+
__syncthreads();
|
813 |
+
|
814 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
815 |
+
{
|
816 |
+
if (tid < s) {
|
817 |
+
const unsigned int xid1 = tid << 1;
|
818 |
+
const unsigned int xid2 = (tid + s) << 1;
|
819 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
820 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
821 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
822 |
+
if (tid + (s << 1) < spre)
|
823 |
+
{
|
824 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
825 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
826 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
827 |
+
}
|
828 |
+
}
|
829 |
+
__syncthreads();
|
830 |
+
}
|
831 |
+
|
832 |
+
if (tid == 0)
|
833 |
+
{
|
834 |
+
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
|
835 |
+
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
|
836 |
+
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
|
837 |
+
}
|
838 |
+
__syncthreads();
|
839 |
+
|
840 |
+
data_weight_ptr += 1;
|
841 |
+
data_loc_w_ptr += 2;
|
842 |
+
grad_attn_weight += grad_weight_stride;
|
843 |
+
grad_sampling_loc += grad_loc_stride;
|
844 |
+
}
|
845 |
+
}
|
846 |
+
}
|
847 |
+
}
|
848 |
+
|
849 |
+
|
850 |
+
template <typename scalar_t>
|
851 |
+
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
|
852 |
+
const scalar_t *grad_col,
|
853 |
+
const scalar_t *data_value,
|
854 |
+
const int64_t *data_spatial_shapes,
|
855 |
+
const int64_t *data_level_start_index,
|
856 |
+
const scalar_t *data_sampling_loc,
|
857 |
+
const scalar_t *data_attn_weight,
|
858 |
+
const int batch_size,
|
859 |
+
const int spatial_size,
|
860 |
+
const int num_heads,
|
861 |
+
const int channels,
|
862 |
+
const int num_levels,
|
863 |
+
const int num_query,
|
864 |
+
const int num_point,
|
865 |
+
scalar_t *grad_value,
|
866 |
+
scalar_t *grad_sampling_loc,
|
867 |
+
scalar_t *grad_attn_weight)
|
868 |
+
{
|
869 |
+
CUDA_KERNEL_LOOP(index, n)
|
870 |
+
{
|
871 |
+
int _temp = index;
|
872 |
+
const int c_col = _temp % channels;
|
873 |
+
_temp /= channels;
|
874 |
+
const int sampling_index = _temp;
|
875 |
+
const int m_col = _temp % num_heads;
|
876 |
+
_temp /= num_heads;
|
877 |
+
const int q_col = _temp % num_query;
|
878 |
+
_temp /= num_query;
|
879 |
+
const int b_col = _temp;
|
880 |
+
|
881 |
+
const scalar_t top_grad = grad_col[index];
|
882 |
+
|
883 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
884 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
885 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
886 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
887 |
+
grad_attn_weight += grad_sampling_ptr;
|
888 |
+
const int grad_weight_stride = 1;
|
889 |
+
const int grad_loc_stride = 2;
|
890 |
+
const int qid_stride = num_heads * channels;
|
891 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
892 |
+
|
893 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
894 |
+
{
|
895 |
+
const int level_start_id = data_level_start_index[l_col];
|
896 |
+
const int spatial_h_ptr = l_col << 1;
|
897 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
898 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
899 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
900 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
901 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
902 |
+
|
903 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
904 |
+
{
|
905 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
906 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
907 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
908 |
+
|
909 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
910 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
911 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
912 |
+
{
|
913 |
+
ms_deform_attn_col2im_bilinear_gm(
|
914 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
915 |
+
top_grad, weight, grad_value_ptr,
|
916 |
+
grad_sampling_loc, grad_attn_weight);
|
917 |
+
}
|
918 |
+
data_weight_ptr += 1;
|
919 |
+
data_loc_w_ptr += 2;
|
920 |
+
grad_attn_weight += grad_weight_stride;
|
921 |
+
grad_sampling_loc += grad_loc_stride;
|
922 |
+
}
|
923 |
+
}
|
924 |
+
}
|
925 |
+
}
|
926 |
+
|
927 |
+
|
928 |
+
template <typename scalar_t>
|
929 |
+
void ms_deformable_im2col_cuda(cudaStream_t stream,
|
930 |
+
const scalar_t* data_value,
|
931 |
+
const int64_t* data_spatial_shapes,
|
932 |
+
const int64_t* data_level_start_index,
|
933 |
+
const scalar_t* data_sampling_loc,
|
934 |
+
const scalar_t* data_attn_weight,
|
935 |
+
const int batch_size,
|
936 |
+
const int spatial_size,
|
937 |
+
const int num_heads,
|
938 |
+
const int channels,
|
939 |
+
const int num_levels,
|
940 |
+
const int num_query,
|
941 |
+
const int num_point,
|
942 |
+
scalar_t* data_col)
|
943 |
+
{
|
944 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
945 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
946 |
+
const int num_threads = CUDA_NUM_THREADS;
|
947 |
+
ms_deformable_im2col_gpu_kernel<scalar_t>
|
948 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
949 |
+
0, stream>>>(
|
950 |
+
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
|
951 |
+
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
|
952 |
+
|
953 |
+
cudaError_t err = cudaGetLastError();
|
954 |
+
if (err != cudaSuccess)
|
955 |
+
{
|
956 |
+
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
957 |
+
}
|
958 |
+
|
959 |
+
}
|
960 |
+
|
961 |
+
template <typename scalar_t>
|
962 |
+
void ms_deformable_col2im_cuda(cudaStream_t stream,
|
963 |
+
const scalar_t* grad_col,
|
964 |
+
const scalar_t* data_value,
|
965 |
+
const int64_t * data_spatial_shapes,
|
966 |
+
const int64_t * data_level_start_index,
|
967 |
+
const scalar_t * data_sampling_loc,
|
968 |
+
const scalar_t * data_attn_weight,
|
969 |
+
const int batch_size,
|
970 |
+
const int spatial_size,
|
971 |
+
const int num_heads,
|
972 |
+
const int channels,
|
973 |
+
const int num_levels,
|
974 |
+
const int num_query,
|
975 |
+
const int num_point,
|
976 |
+
scalar_t* grad_value,
|
977 |
+
scalar_t* grad_sampling_loc,
|
978 |
+
scalar_t* grad_attn_weight)
|
979 |
+
{
|
980 |
+
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
|
981 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
982 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
983 |
+
if (channels > 1024)
|
984 |
+
{
|
985 |
+
if ((channels & 1023) == 0)
|
986 |
+
{
|
987 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
|
988 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
989 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
990 |
+
num_kernels,
|
991 |
+
grad_col,
|
992 |
+
data_value,
|
993 |
+
data_spatial_shapes,
|
994 |
+
data_level_start_index,
|
995 |
+
data_sampling_loc,
|
996 |
+
data_attn_weight,
|
997 |
+
batch_size,
|
998 |
+
spatial_size,
|
999 |
+
num_heads,
|
1000 |
+
channels,
|
1001 |
+
num_levels,
|
1002 |
+
num_query,
|
1003 |
+
num_point,
|
1004 |
+
grad_value,
|
1005 |
+
grad_sampling_loc,
|
1006 |
+
grad_attn_weight);
|
1007 |
+
}
|
1008 |
+
else
|
1009 |
+
{
|
1010 |
+
ms_deformable_col2im_gpu_kernel_gm<scalar_t>
|
1011 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1012 |
+
0, stream>>>(
|
1013 |
+
num_kernels,
|
1014 |
+
grad_col,
|
1015 |
+
data_value,
|
1016 |
+
data_spatial_shapes,
|
1017 |
+
data_level_start_index,
|
1018 |
+
data_sampling_loc,
|
1019 |
+
data_attn_weight,
|
1020 |
+
batch_size,
|
1021 |
+
spatial_size,
|
1022 |
+
num_heads,
|
1023 |
+
channels,
|
1024 |
+
num_levels,
|
1025 |
+
num_query,
|
1026 |
+
num_point,
|
1027 |
+
grad_value,
|
1028 |
+
grad_sampling_loc,
|
1029 |
+
grad_attn_weight);
|
1030 |
+
}
|
1031 |
+
}
|
1032 |
+
else{
|
1033 |
+
switch(channels)
|
1034 |
+
{
|
1035 |
+
case 1:
|
1036 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
|
1037 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1038 |
+
0, stream>>>(
|
1039 |
+
num_kernels,
|
1040 |
+
grad_col,
|
1041 |
+
data_value,
|
1042 |
+
data_spatial_shapes,
|
1043 |
+
data_level_start_index,
|
1044 |
+
data_sampling_loc,
|
1045 |
+
data_attn_weight,
|
1046 |
+
batch_size,
|
1047 |
+
spatial_size,
|
1048 |
+
num_heads,
|
1049 |
+
channels,
|
1050 |
+
num_levels,
|
1051 |
+
num_query,
|
1052 |
+
num_point,
|
1053 |
+
grad_value,
|
1054 |
+
grad_sampling_loc,
|
1055 |
+
grad_attn_weight);
|
1056 |
+
break;
|
1057 |
+
case 2:
|
1058 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
|
1059 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1060 |
+
0, stream>>>(
|
1061 |
+
num_kernels,
|
1062 |
+
grad_col,
|
1063 |
+
data_value,
|
1064 |
+
data_spatial_shapes,
|
1065 |
+
data_level_start_index,
|
1066 |
+
data_sampling_loc,
|
1067 |
+
data_attn_weight,
|
1068 |
+
batch_size,
|
1069 |
+
spatial_size,
|
1070 |
+
num_heads,
|
1071 |
+
channels,
|
1072 |
+
num_levels,
|
1073 |
+
num_query,
|
1074 |
+
num_point,
|
1075 |
+
grad_value,
|
1076 |
+
grad_sampling_loc,
|
1077 |
+
grad_attn_weight);
|
1078 |
+
break;
|
1079 |
+
case 4:
|
1080 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
|
1081 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1082 |
+
0, stream>>>(
|
1083 |
+
num_kernels,
|
1084 |
+
grad_col,
|
1085 |
+
data_value,
|
1086 |
+
data_spatial_shapes,
|
1087 |
+
data_level_start_index,
|
1088 |
+
data_sampling_loc,
|
1089 |
+
data_attn_weight,
|
1090 |
+
batch_size,
|
1091 |
+
spatial_size,
|
1092 |
+
num_heads,
|
1093 |
+
channels,
|
1094 |
+
num_levels,
|
1095 |
+
num_query,
|
1096 |
+
num_point,
|
1097 |
+
grad_value,
|
1098 |
+
grad_sampling_loc,
|
1099 |
+
grad_attn_weight);
|
1100 |
+
break;
|
1101 |
+
case 8:
|
1102 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
|
1103 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1104 |
+
0, stream>>>(
|
1105 |
+
num_kernels,
|
1106 |
+
grad_col,
|
1107 |
+
data_value,
|
1108 |
+
data_spatial_shapes,
|
1109 |
+
data_level_start_index,
|
1110 |
+
data_sampling_loc,
|
1111 |
+
data_attn_weight,
|
1112 |
+
batch_size,
|
1113 |
+
spatial_size,
|
1114 |
+
num_heads,
|
1115 |
+
channels,
|
1116 |
+
num_levels,
|
1117 |
+
num_query,
|
1118 |
+
num_point,
|
1119 |
+
grad_value,
|
1120 |
+
grad_sampling_loc,
|
1121 |
+
grad_attn_weight);
|
1122 |
+
break;
|
1123 |
+
case 16:
|
1124 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
|
1125 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1126 |
+
0, stream>>>(
|
1127 |
+
num_kernels,
|
1128 |
+
grad_col,
|
1129 |
+
data_value,
|
1130 |
+
data_spatial_shapes,
|
1131 |
+
data_level_start_index,
|
1132 |
+
data_sampling_loc,
|
1133 |
+
data_attn_weight,
|
1134 |
+
batch_size,
|
1135 |
+
spatial_size,
|
1136 |
+
num_heads,
|
1137 |
+
channels,
|
1138 |
+
num_levels,
|
1139 |
+
num_query,
|
1140 |
+
num_point,
|
1141 |
+
grad_value,
|
1142 |
+
grad_sampling_loc,
|
1143 |
+
grad_attn_weight);
|
1144 |
+
break;
|
1145 |
+
case 32:
|
1146 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
|
1147 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1148 |
+
0, stream>>>(
|
1149 |
+
num_kernels,
|
1150 |
+
grad_col,
|
1151 |
+
data_value,
|
1152 |
+
data_spatial_shapes,
|
1153 |
+
data_level_start_index,
|
1154 |
+
data_sampling_loc,
|
1155 |
+
data_attn_weight,
|
1156 |
+
batch_size,
|
1157 |
+
spatial_size,
|
1158 |
+
num_heads,
|
1159 |
+
channels,
|
1160 |
+
num_levels,
|
1161 |
+
num_query,
|
1162 |
+
num_point,
|
1163 |
+
grad_value,
|
1164 |
+
grad_sampling_loc,
|
1165 |
+
grad_attn_weight);
|
1166 |
+
break;
|
1167 |
+
case 64:
|
1168 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
|
1169 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1170 |
+
0, stream>>>(
|
1171 |
+
num_kernels,
|
1172 |
+
grad_col,
|
1173 |
+
data_value,
|
1174 |
+
data_spatial_shapes,
|
1175 |
+
data_level_start_index,
|
1176 |
+
data_sampling_loc,
|
1177 |
+
data_attn_weight,
|
1178 |
+
batch_size,
|
1179 |
+
spatial_size,
|
1180 |
+
num_heads,
|
1181 |
+
channels,
|
1182 |
+
num_levels,
|
1183 |
+
num_query,
|
1184 |
+
num_point,
|
1185 |
+
grad_value,
|
1186 |
+
grad_sampling_loc,
|
1187 |
+
grad_attn_weight);
|
1188 |
+
break;
|
1189 |
+
case 128:
|
1190 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
|
1191 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1192 |
+
0, stream>>>(
|
1193 |
+
num_kernels,
|
1194 |
+
grad_col,
|
1195 |
+
data_value,
|
1196 |
+
data_spatial_shapes,
|
1197 |
+
data_level_start_index,
|
1198 |
+
data_sampling_loc,
|
1199 |
+
data_attn_weight,
|
1200 |
+
batch_size,
|
1201 |
+
spatial_size,
|
1202 |
+
num_heads,
|
1203 |
+
channels,
|
1204 |
+
num_levels,
|
1205 |
+
num_query,
|
1206 |
+
num_point,
|
1207 |
+
grad_value,
|
1208 |
+
grad_sampling_loc,
|
1209 |
+
grad_attn_weight);
|
1210 |
+
break;
|
1211 |
+
case 256:
|
1212 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
|
1213 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1214 |
+
0, stream>>>(
|
1215 |
+
num_kernels,
|
1216 |
+
grad_col,
|
1217 |
+
data_value,
|
1218 |
+
data_spatial_shapes,
|
1219 |
+
data_level_start_index,
|
1220 |
+
data_sampling_loc,
|
1221 |
+
data_attn_weight,
|
1222 |
+
batch_size,
|
1223 |
+
spatial_size,
|
1224 |
+
num_heads,
|
1225 |
+
channels,
|
1226 |
+
num_levels,
|
1227 |
+
num_query,
|
1228 |
+
num_point,
|
1229 |
+
grad_value,
|
1230 |
+
grad_sampling_loc,
|
1231 |
+
grad_attn_weight);
|
1232 |
+
break;
|
1233 |
+
case 512:
|
1234 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
|
1235 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1236 |
+
0, stream>>>(
|
1237 |
+
num_kernels,
|
1238 |
+
grad_col,
|
1239 |
+
data_value,
|
1240 |
+
data_spatial_shapes,
|
1241 |
+
data_level_start_index,
|
1242 |
+
data_sampling_loc,
|
1243 |
+
data_attn_weight,
|
1244 |
+
batch_size,
|
1245 |
+
spatial_size,
|
1246 |
+
num_heads,
|
1247 |
+
channels,
|
1248 |
+
num_levels,
|
1249 |
+
num_query,
|
1250 |
+
num_point,
|
1251 |
+
grad_value,
|
1252 |
+
grad_sampling_loc,
|
1253 |
+
grad_attn_weight);
|
1254 |
+
break;
|
1255 |
+
case 1024:
|
1256 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
|
1257 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1258 |
+
0, stream>>>(
|
1259 |
+
num_kernels,
|
1260 |
+
grad_col,
|
1261 |
+
data_value,
|
1262 |
+
data_spatial_shapes,
|
1263 |
+
data_level_start_index,
|
1264 |
+
data_sampling_loc,
|
1265 |
+
data_attn_weight,
|
1266 |
+
batch_size,
|
1267 |
+
spatial_size,
|
1268 |
+
num_heads,
|
1269 |
+
channels,
|
1270 |
+
num_levels,
|
1271 |
+
num_query,
|
1272 |
+
num_point,
|
1273 |
+
grad_value,
|
1274 |
+
grad_sampling_loc,
|
1275 |
+
grad_attn_weight);
|
1276 |
+
break;
|
1277 |
+
default:
|
1278 |
+
if (channels < 64)
|
1279 |
+
{
|
1280 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
|
1281 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1282 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1283 |
+
num_kernels,
|
1284 |
+
grad_col,
|
1285 |
+
data_value,
|
1286 |
+
data_spatial_shapes,
|
1287 |
+
data_level_start_index,
|
1288 |
+
data_sampling_loc,
|
1289 |
+
data_attn_weight,
|
1290 |
+
batch_size,
|
1291 |
+
spatial_size,
|
1292 |
+
num_heads,
|
1293 |
+
channels,
|
1294 |
+
num_levels,
|
1295 |
+
num_query,
|
1296 |
+
num_point,
|
1297 |
+
grad_value,
|
1298 |
+
grad_sampling_loc,
|
1299 |
+
grad_attn_weight);
|
1300 |
+
}
|
1301 |
+
else
|
1302 |
+
{
|
1303 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
|
1304 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1305 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1306 |
+
num_kernels,
|
1307 |
+
grad_col,
|
1308 |
+
data_value,
|
1309 |
+
data_spatial_shapes,
|
1310 |
+
data_level_start_index,
|
1311 |
+
data_sampling_loc,
|
1312 |
+
data_attn_weight,
|
1313 |
+
batch_size,
|
1314 |
+
spatial_size,
|
1315 |
+
num_heads,
|
1316 |
+
channels,
|
1317 |
+
num_levels,
|
1318 |
+
num_query,
|
1319 |
+
num_point,
|
1320 |
+
grad_value,
|
1321 |
+
grad_sampling_loc,
|
1322 |
+
grad_attn_weight);
|
1323 |
+
}
|
1324 |
+
}
|
1325 |
+
}
|
1326 |
+
cudaError_t err = cudaGetLastError();
|
1327 |
+
if (err != cudaSuccess)
|
1328 |
+
{
|
1329 |
+
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
1330 |
+
}
|
1331 |
+
|
1332 |
+
}
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/ms_deform_attn.h
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#pragma once
|
17 |
+
|
18 |
+
#include "cpu/ms_deform_attn_cpu.h"
|
19 |
+
|
20 |
+
#ifdef WITH_CUDA
|
21 |
+
#include "cuda/ms_deform_attn_cuda.h"
|
22 |
+
#endif
|
23 |
+
|
24 |
+
|
25 |
+
at::Tensor
|
26 |
+
ms_deform_attn_forward(
|
27 |
+
const at::Tensor &value,
|
28 |
+
const at::Tensor &spatial_shapes,
|
29 |
+
const at::Tensor &level_start_index,
|
30 |
+
const at::Tensor &sampling_loc,
|
31 |
+
const at::Tensor &attn_weight,
|
32 |
+
const int im2col_step)
|
33 |
+
{
|
34 |
+
if (value.type().is_cuda())
|
35 |
+
{
|
36 |
+
#ifdef WITH_CUDA
|
37 |
+
return ms_deform_attn_cuda_forward(
|
38 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
39 |
+
#else
|
40 |
+
AT_ERROR("Not compiled with GPU support");
|
41 |
+
#endif
|
42 |
+
}
|
43 |
+
AT_ERROR("Not implemented on the CPU");
|
44 |
+
}
|
45 |
+
|
46 |
+
std::vector<at::Tensor>
|
47 |
+
ms_deform_attn_backward(
|
48 |
+
const at::Tensor &value,
|
49 |
+
const at::Tensor &spatial_shapes,
|
50 |
+
const at::Tensor &level_start_index,
|
51 |
+
const at::Tensor &sampling_loc,
|
52 |
+
const at::Tensor &attn_weight,
|
53 |
+
const at::Tensor &grad_output,
|
54 |
+
const int im2col_step)
|
55 |
+
{
|
56 |
+
if (value.type().is_cuda())
|
57 |
+
{
|
58 |
+
#ifdef WITH_CUDA
|
59 |
+
return ms_deform_attn_cuda_backward(
|
60 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
61 |
+
#else
|
62 |
+
AT_ERROR("Not compiled with GPU support");
|
63 |
+
#endif
|
64 |
+
}
|
65 |
+
AT_ERROR("Not implemented on the CPU");
|
66 |
+
}
|
67 |
+
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/src/vision.cpp
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
/*!
|
12 |
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
13 |
+
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
14 |
+
*/
|
15 |
+
|
16 |
+
#include "ms_deform_attn.h"
|
17 |
+
|
18 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
19 |
+
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
|
20 |
+
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
|
21 |
+
}
|
annotator/entityseg/mask2former/modeling/pixel_decoder/ops/test.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------------------
|
2 |
+
# Deformable DETR
|
3 |
+
# Copyright (c) 2020 SenseTime. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------------------
|
6 |
+
# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
7 |
+
# ------------------------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
10 |
+
# Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import print_function
|
14 |
+
from __future__ import division
|
15 |
+
|
16 |
+
import time
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch.autograd import gradcheck
|
20 |
+
|
21 |
+
from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch
|
22 |
+
|
23 |
+
|
24 |
+
N, M, D = 1, 2, 2
|
25 |
+
Lq, L, P = 2, 2, 2
|
26 |
+
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
|
27 |
+
level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1]))
|
28 |
+
S = sum([(H*W).item() for H, W in shapes])
|
29 |
+
|
30 |
+
|
31 |
+
torch.manual_seed(3)
|
32 |
+
|
33 |
+
|
34 |
+
@torch.no_grad()
|
35 |
+
def check_forward_equal_with_pytorch_double():
|
36 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
37 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
38 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
39 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
40 |
+
im2col_step = 2
|
41 |
+
output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu()
|
42 |
+
output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu()
|
43 |
+
fwdok = torch.allclose(output_cuda, output_pytorch)
|
44 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
45 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
46 |
+
|
47 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
48 |
+
|
49 |
+
|
50 |
+
@torch.no_grad()
|
51 |
+
def check_forward_equal_with_pytorch_float():
|
52 |
+
value = torch.rand(N, S, M, D).cuda() * 0.01
|
53 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
54 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
55 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
56 |
+
im2col_step = 2
|
57 |
+
output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu()
|
58 |
+
output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu()
|
59 |
+
fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
|
60 |
+
max_abs_err = (output_cuda - output_pytorch).abs().max()
|
61 |
+
max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
|
62 |
+
|
63 |
+
print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
|
64 |
+
|
65 |
+
|
66 |
+
def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True):
|
67 |
+
|
68 |
+
value = torch.rand(N, S, M, channels).cuda() * 0.01
|
69 |
+
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
|
70 |
+
attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
|
71 |
+
attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
|
72 |
+
im2col_step = 2
|
73 |
+
func = MSDeformAttnFunction.apply
|
74 |
+
|
75 |
+
value.requires_grad = grad_value
|
76 |
+
sampling_locations.requires_grad = grad_sampling_loc
|
77 |
+
attention_weights.requires_grad = grad_attn_weight
|
78 |
+
|
79 |
+
gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step))
|
80 |
+
|
81 |
+
print(f'* {gradok} check_gradient_numerical(D={channels})')
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == '__main__':
|
85 |
+
check_forward_equal_with_pytorch_double()
|
86 |
+
check_forward_equal_with_pytorch_float()
|
87 |
+
|
88 |
+
for channels in [30, 32, 64, 71, 1025, 2048, 3096]:
|
89 |
+
check_gradient_numerical(channels, True, True, True)
|
90 |
+
|
91 |
+
|
92 |
+
|
annotator/entityseg/mask2former/modeling/transformer_decoder/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
from .maskformer_transformer_decoder import StandardTransformerDecoder
|
3 |
+
from .mask2former_transformer_decoder import MultiScaleMaskedTransformerDecoder
|
4 |
+
from .cropformer_transformer_decoder import CropSharedMultiScaleMaskedTransformerDecoder
|
5 |
+
|
annotator/entityseg/mask2former/modeling/transformer_decoder/cropformer_transformer_decoder.py
ADDED
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import logging
|
4 |
+
import fvcore.nn.weight_init as weight_init
|
5 |
+
from typing import Optional
|
6 |
+
import torch
|
7 |
+
from torch import nn, Tensor
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d
|
12 |
+
|
13 |
+
from .position_encoding import PositionEmbeddingSine3D2D
|
14 |
+
from .maskformer_transformer_decoder import TRANSFORMER_DECODER_REGISTRY
|
15 |
+
|
16 |
+
import pdb
|
17 |
+
|
18 |
+
class SelfAttentionLayer(nn.Module):
|
19 |
+
|
20 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
21 |
+
activation="relu", normalize_before=False):
|
22 |
+
super().__init__()
|
23 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
24 |
+
|
25 |
+
self.norm = nn.LayerNorm(d_model)
|
26 |
+
self.dropout = nn.Dropout(dropout)
|
27 |
+
|
28 |
+
self.activation = _get_activation_fn(activation)
|
29 |
+
self.normalize_before = normalize_before
|
30 |
+
|
31 |
+
self._reset_parameters()
|
32 |
+
|
33 |
+
def _reset_parameters(self):
|
34 |
+
for p in self.parameters():
|
35 |
+
if p.dim() > 1:
|
36 |
+
nn.init.xavier_uniform_(p)
|
37 |
+
|
38 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
39 |
+
return tensor if pos is None else tensor + pos
|
40 |
+
|
41 |
+
def forward_post(self, tgt,
|
42 |
+
tgt_mask: Optional[Tensor] = None,
|
43 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
44 |
+
query_pos: Optional[Tensor] = None):
|
45 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
46 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
47 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
48 |
+
tgt = tgt + self.dropout(tgt2)
|
49 |
+
tgt = self.norm(tgt)
|
50 |
+
|
51 |
+
return tgt
|
52 |
+
|
53 |
+
def forward_pre(self, tgt,
|
54 |
+
tgt_mask: Optional[Tensor] = None,
|
55 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
56 |
+
query_pos: Optional[Tensor] = None):
|
57 |
+
tgt2 = self.norm(tgt)
|
58 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
59 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
60 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
61 |
+
tgt = tgt + self.dropout(tgt2)
|
62 |
+
|
63 |
+
return tgt
|
64 |
+
|
65 |
+
def forward(self, tgt,
|
66 |
+
tgt_mask: Optional[Tensor] = None,
|
67 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
68 |
+
query_pos: Optional[Tensor] = None):
|
69 |
+
if self.normalize_before:
|
70 |
+
return self.forward_pre(tgt, tgt_mask,
|
71 |
+
tgt_key_padding_mask, query_pos)
|
72 |
+
return self.forward_post(tgt, tgt_mask,
|
73 |
+
tgt_key_padding_mask, query_pos)
|
74 |
+
|
75 |
+
|
76 |
+
class CrossAttentionLayer(nn.Module):
|
77 |
+
|
78 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
79 |
+
activation="relu", normalize_before=False):
|
80 |
+
super().__init__()
|
81 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
82 |
+
|
83 |
+
self.norm = nn.LayerNorm(d_model)
|
84 |
+
self.dropout = nn.Dropout(dropout)
|
85 |
+
|
86 |
+
self.activation = _get_activation_fn(activation)
|
87 |
+
self.normalize_before = normalize_before
|
88 |
+
|
89 |
+
self._reset_parameters()
|
90 |
+
|
91 |
+
def _reset_parameters(self):
|
92 |
+
for p in self.parameters():
|
93 |
+
if p.dim() > 1:
|
94 |
+
nn.init.xavier_uniform_(p)
|
95 |
+
|
96 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
97 |
+
return tensor if pos is None else tensor + pos
|
98 |
+
|
99 |
+
def forward_post(self, tgt, memory,
|
100 |
+
memory_mask: Optional[Tensor] = None,
|
101 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
102 |
+
pos: Optional[Tensor] = None,
|
103 |
+
query_pos: Optional[Tensor] = None):
|
104 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
105 |
+
key=self.with_pos_embed(memory, pos),
|
106 |
+
value=memory, attn_mask=memory_mask,
|
107 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
108 |
+
tgt = tgt + self.dropout(tgt2)
|
109 |
+
tgt = self.norm(tgt)
|
110 |
+
|
111 |
+
return tgt
|
112 |
+
|
113 |
+
def forward_pre(self, tgt, memory,
|
114 |
+
memory_mask: Optional[Tensor] = None,
|
115 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
116 |
+
pos: Optional[Tensor] = None,
|
117 |
+
query_pos: Optional[Tensor] = None):
|
118 |
+
tgt2 = self.norm(tgt)
|
119 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
120 |
+
key=self.with_pos_embed(memory, pos),
|
121 |
+
value=memory, attn_mask=memory_mask,
|
122 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
123 |
+
tgt = tgt + self.dropout(tgt2)
|
124 |
+
|
125 |
+
return tgt
|
126 |
+
|
127 |
+
def forward(self, tgt, memory,
|
128 |
+
memory_mask: Optional[Tensor] = None,
|
129 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
130 |
+
pos: Optional[Tensor] = None,
|
131 |
+
query_pos: Optional[Tensor] = None):
|
132 |
+
if self.normalize_before:
|
133 |
+
return self.forward_pre(tgt, memory, memory_mask,
|
134 |
+
memory_key_padding_mask, pos, query_pos)
|
135 |
+
return self.forward_post(tgt, memory, memory_mask,
|
136 |
+
memory_key_padding_mask, pos, query_pos)
|
137 |
+
|
138 |
+
|
139 |
+
class FFNLayer(nn.Module):
|
140 |
+
|
141 |
+
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
142 |
+
activation="relu", normalize_before=False):
|
143 |
+
super().__init__()
|
144 |
+
# Implementation of Feedforward model
|
145 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
146 |
+
self.dropout = nn.Dropout(dropout)
|
147 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
148 |
+
|
149 |
+
self.norm = nn.LayerNorm(d_model)
|
150 |
+
|
151 |
+
self.activation = _get_activation_fn(activation)
|
152 |
+
self.normalize_before = normalize_before
|
153 |
+
|
154 |
+
self._reset_parameters()
|
155 |
+
|
156 |
+
def _reset_parameters(self):
|
157 |
+
for p in self.parameters():
|
158 |
+
if p.dim() > 1:
|
159 |
+
nn.init.xavier_uniform_(p)
|
160 |
+
|
161 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
162 |
+
return tensor if pos is None else tensor + pos
|
163 |
+
|
164 |
+
def forward_post(self, tgt):
|
165 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
166 |
+
tgt = tgt + self.dropout(tgt2)
|
167 |
+
tgt = self.norm(tgt)
|
168 |
+
return tgt
|
169 |
+
|
170 |
+
def forward_pre(self, tgt):
|
171 |
+
tgt2 = self.norm(tgt)
|
172 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
173 |
+
tgt = tgt + self.dropout(tgt2)
|
174 |
+
return tgt
|
175 |
+
|
176 |
+
def forward(self, tgt):
|
177 |
+
if self.normalize_before:
|
178 |
+
return self.forward_pre(tgt)
|
179 |
+
return self.forward_post(tgt)
|
180 |
+
|
181 |
+
def _get_activation_fn(activation):
|
182 |
+
"""Return an activation function given a string"""
|
183 |
+
if activation == "relu":
|
184 |
+
return F.relu
|
185 |
+
if activation == "gelu":
|
186 |
+
return F.gelu
|
187 |
+
if activation == "glu":
|
188 |
+
return F.glu
|
189 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
190 |
+
|
191 |
+
|
192 |
+
class MLP(nn.Module):
|
193 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
194 |
+
|
195 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
196 |
+
super().__init__()
|
197 |
+
self.num_layers = num_layers
|
198 |
+
h = [hidden_dim] * (num_layers - 1)
|
199 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
for i, layer in enumerate(self.layers):
|
203 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
204 |
+
return x
|
205 |
+
|
206 |
+
class Make3dQueries(nn.Module):
|
207 |
+
_version = 2
|
208 |
+
def __init__(self, cfg):
|
209 |
+
super().__init__()
|
210 |
+
self.cfg = cfg
|
211 |
+
self.enc_crosattn_3d = nn.ModuleList()
|
212 |
+
self.enc_selfattn_3d = nn.ModuleList()
|
213 |
+
self.enc_ffn_3d = nn.ModuleList()
|
214 |
+
self.num_layers_3d = cfg.ENTITY.FUSE_NUM_LAYERS
|
215 |
+
for _ in range(self.num_layers_3d):
|
216 |
+
self.enc_crosattn_3d.append(
|
217 |
+
CrossAttentionLayer(
|
218 |
+
d_model=cfg.ENTITY.FUSE_ENC_HIDDIEN_DIM,
|
219 |
+
nhead=cfg.ENTITY.FUSE_ENC_NHEADS,
|
220 |
+
dropout=0.0,
|
221 |
+
normalize_before=cfg.ENTITY.FUSE_ENC_PRE_NORM)
|
222 |
+
)
|
223 |
+
self.enc_selfattn_3d.append(
|
224 |
+
SelfAttentionLayer(
|
225 |
+
d_model=cfg.ENTITY.FUSE_ENC_HIDDIEN_DIM,
|
226 |
+
nhead=cfg.ENTITY.FUSE_ENC_NHEADS,
|
227 |
+
dropout=0.0,
|
228 |
+
normalize_before=cfg.ENTITY.FUSE_ENC_PRE_NORM)
|
229 |
+
)
|
230 |
+
self.enc_ffn_3d.append(
|
231 |
+
FFNLayer(
|
232 |
+
d_model=cfg.ENTITY.FUSE_ENC_HIDDIEN_DIM,
|
233 |
+
dim_feedforward=cfg.ENTITY.FUSE_ENC_DIM_FEEDFORWARD,
|
234 |
+
dropout=0.0,
|
235 |
+
normalize_before=cfg.ENTITY.FUSE_ENC_PRE_NORM,
|
236 |
+
)
|
237 |
+
)
|
238 |
+
|
239 |
+
def forward(self, output_2d, query_embed_2d, query_embed_3d):
|
240 |
+
Q, BT, C = query_embed_2d.shape
|
241 |
+
Q, B, C = query_embed_3d.shape
|
242 |
+
T = int(BT / B)
|
243 |
+
|
244 |
+
output_3d = output_2d[:,0::T,:]
|
245 |
+
### (Q, B, T, C)
|
246 |
+
output_2d = output_2d.unflatten(1, (B, T)).permute((0,2,1,3)).flatten(0,1)
|
247 |
+
query_embed_2d = query_embed_2d.unflatten(1, (B, T)).permute((0,2,1,3)).flatten(0,1)
|
248 |
+
|
249 |
+
for i in range(self.num_layers_3d):
|
250 |
+
output_3d = self.enc_crosattn_3d[i](output_3d, output_2d, pos=query_embed_2d, query_pos=query_embed_3d)
|
251 |
+
output_3d = self.enc_selfattn_3d[i](output_3d)
|
252 |
+
output_3d = self.enc_ffn_3d[i](output_3d)
|
253 |
+
|
254 |
+
return output_3d
|
255 |
+
|
256 |
+
|
257 |
+
@TRANSFORMER_DECODER_REGISTRY.register()
|
258 |
+
class CropSharedMultiScaleMaskedTransformerDecoder(nn.Module):
|
259 |
+
_version = 2
|
260 |
+
|
261 |
+
def _load_from_state_dict(
|
262 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
263 |
+
):
|
264 |
+
version = local_metadata.get("version", None)
|
265 |
+
if version is None or version < 2:
|
266 |
+
# Do not warn if train from scratch
|
267 |
+
scratch = True
|
268 |
+
logger = logging.getLogger(__name__)
|
269 |
+
for k in list(state_dict.keys()):
|
270 |
+
newk = k
|
271 |
+
if "static_query" in k:
|
272 |
+
newk = k.replace("static_query", "query_feat")
|
273 |
+
if newk != k:
|
274 |
+
state_dict[newk] = state_dict[k]
|
275 |
+
del state_dict[k]
|
276 |
+
scratch = False
|
277 |
+
|
278 |
+
if not scratch:
|
279 |
+
logger.warning(
|
280 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
281 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
282 |
+
)
|
283 |
+
|
284 |
+
@configurable
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
cfg,
|
288 |
+
in_channels,
|
289 |
+
mask_classification=True,
|
290 |
+
*,
|
291 |
+
num_classes: int,
|
292 |
+
hidden_dim: int,
|
293 |
+
num_queries: int,
|
294 |
+
nheads: int,
|
295 |
+
dim_feedforward: int,
|
296 |
+
dec_layers: int,
|
297 |
+
pre_norm: bool,
|
298 |
+
mask_dim: int,
|
299 |
+
enforce_input_project: bool,
|
300 |
+
):
|
301 |
+
"""
|
302 |
+
NOTE: this interface is experimental.
|
303 |
+
Args:
|
304 |
+
in_channels: channels of the input features
|
305 |
+
mask_classification: whether to add mask classifier or not
|
306 |
+
num_classes: number of classes
|
307 |
+
hidden_dim: Transformer feature dimension
|
308 |
+
num_queries: number of queries
|
309 |
+
nheads: number of heads
|
310 |
+
dim_feedforward: feature dimension in feedforward network
|
311 |
+
enc_layers: number of Transformer encoder layers
|
312 |
+
dec_layers: number of Transformer decoder layers
|
313 |
+
pre_norm: whether to use pre-LayerNorm or not
|
314 |
+
mask_dim: mask feature dimension
|
315 |
+
enforce_input_project: add input project 1x1 conv even if input
|
316 |
+
channels and hidden dim is identical
|
317 |
+
"""
|
318 |
+
super().__init__()
|
319 |
+
|
320 |
+
assert mask_classification, "Only support mask classification model"
|
321 |
+
self.cfg = cfg
|
322 |
+
|
323 |
+
self.mask_classification = mask_classification
|
324 |
+
# positional encoding
|
325 |
+
N_steps = hidden_dim // 2
|
326 |
+
|
327 |
+
self.pe_layer = PositionEmbeddingSine3D2D(N_steps, normalize=True)
|
328 |
+
|
329 |
+
# define Transformer decoder here
|
330 |
+
self.num_heads = nheads
|
331 |
+
self.num_layers = dec_layers
|
332 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
333 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
334 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
335 |
+
|
336 |
+
for _ in range(self.num_layers):
|
337 |
+
self.transformer_self_attention_layers.append(
|
338 |
+
SelfAttentionLayer(
|
339 |
+
d_model=hidden_dim,
|
340 |
+
nhead=nheads,
|
341 |
+
dropout=0.0,
|
342 |
+
normalize_before=pre_norm,
|
343 |
+
)
|
344 |
+
)
|
345 |
+
|
346 |
+
self.transformer_cross_attention_layers.append(
|
347 |
+
CrossAttentionLayer(
|
348 |
+
d_model=hidden_dim,
|
349 |
+
nhead=nheads,
|
350 |
+
dropout=0.0,
|
351 |
+
normalize_before=pre_norm,
|
352 |
+
)
|
353 |
+
)
|
354 |
+
|
355 |
+
self.transformer_ffn_layers.append(
|
356 |
+
FFNLayer(
|
357 |
+
d_model=hidden_dim,
|
358 |
+
dim_feedforward=dim_feedforward,
|
359 |
+
dropout=0.0,
|
360 |
+
normalize_before=pre_norm,
|
361 |
+
)
|
362 |
+
)
|
363 |
+
|
364 |
+
self.make_3d = Make3dQueries(cfg)
|
365 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
366 |
+
|
367 |
+
self.num_queries = num_queries
|
368 |
+
# learnable query features
|
369 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
370 |
+
# learnable query p.e.
|
371 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
372 |
+
|
373 |
+
# level embedding (we always use 3 scales)
|
374 |
+
self.num_feature_levels = 3
|
375 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
376 |
+
self.input_proj = nn.ModuleList()
|
377 |
+
for _ in range(self.num_feature_levels):
|
378 |
+
if in_channels != hidden_dim or enforce_input_project:
|
379 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
380 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
381 |
+
weight_init.c2_xavier_fill(self.input_proj_3d[-1])
|
382 |
+
else:
|
383 |
+
self.input_proj.append(nn.Sequential())
|
384 |
+
|
385 |
+
# output FFNs
|
386 |
+
if self.mask_classification:
|
387 |
+
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
|
388 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
389 |
+
|
390 |
+
@classmethod
|
391 |
+
def from_config(cls, cfg, in_channels, mask_classification):
|
392 |
+
ret = {}
|
393 |
+
ret["cfg"] = cfg
|
394 |
+
ret["in_channels"] = in_channels
|
395 |
+
ret["mask_classification"] = mask_classification
|
396 |
+
|
397 |
+
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
|
398 |
+
ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
|
399 |
+
ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
|
400 |
+
# Transformer parameters:
|
401 |
+
ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
402 |
+
ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
403 |
+
|
404 |
+
# NOTE: because we add learnable query features which requires supervision,
|
405 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
406 |
+
# implementation: that is, number of auxiliary losses is always
|
407 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
408 |
+
# auxiliary losses equals number of decoders plus 1.
|
409 |
+
assert cfg.MODEL.MASK_FORMER.DEC_LAYERS >= 1
|
410 |
+
ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS - 1
|
411 |
+
ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
412 |
+
ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ
|
413 |
+
|
414 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
415 |
+
|
416 |
+
return ret
|
417 |
+
|
418 |
+
def forward(self, x, mask_features, mask = None):
|
419 |
+
# x is a list of multi-scale feature
|
420 |
+
assert len(x) == self.num_feature_levels
|
421 |
+
|
422 |
+
bt, c_m, h_m, w_m = mask_features.shape
|
423 |
+
bs = bt // (self.cfg.ENTITY.CROP_SAMPLE_NUM_TRAIN+1) if self.training else 1
|
424 |
+
# bs = bt // self.num_views if self.training else 1
|
425 |
+
t_m = bt // bs
|
426 |
+
mask_features_2d = mask_features
|
427 |
+
mask_features_3d = mask_features.view(bs, t_m, c_m, h_m, w_m)
|
428 |
+
|
429 |
+
src_2d, src_3d = [], []
|
430 |
+
pos_2d, pos_3d = [], []
|
431 |
+
size_list = []
|
432 |
+
|
433 |
+
# disable mask, it does not affect performance
|
434 |
+
del mask
|
435 |
+
|
436 |
+
# pdb.set_trace()
|
437 |
+
for i in range(self.num_feature_levels):
|
438 |
+
size_list.append(x[i].shape[-2:])
|
439 |
+
pos_2d_, pos_3d_ = self.pe_layer(x[i].view(bs, t_m, -1, size_list[-1][0], size_list[-1][1]))
|
440 |
+
|
441 |
+
pos_3d.append(pos_3d_.flatten(3))
|
442 |
+
src_3d.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
443 |
+
|
444 |
+
pos_2d.append(pos_2d_.flatten(2))
|
445 |
+
src_2d.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
446 |
+
|
447 |
+
# NTxCxHW => NxTxCxHW => (TxHW)xNxC
|
448 |
+
_, c, hw = src_3d[-1].shape
|
449 |
+
pos_3d[-1] = pos_3d[-1].view(bs, t_m, c, hw).permute(1, 3, 0, 2).flatten(0, 1)
|
450 |
+
src_3d[-1] = src_3d[-1].view(bs, t_m, c, hw).permute(1, 3, 0, 2).flatten(0, 1)
|
451 |
+
|
452 |
+
pos_2d[-1] = pos_2d[-1].permute(2,0,1)
|
453 |
+
src_2d[-1] = src_2d[-1].permute(2,0,1)
|
454 |
+
|
455 |
+
# QxNxC
|
456 |
+
query_embed_2d = self.query_embed.weight.unsqueeze(1).repeat(1, bt, 1)
|
457 |
+
output_2d = self.query_feat.weight.unsqueeze(1).repeat(1, bt, 1)
|
458 |
+
|
459 |
+
predictions_class_2d = []
|
460 |
+
predictions_mask_2d = []
|
461 |
+
|
462 |
+
# prediction heads on learnable query features
|
463 |
+
outputs_class_2d, outputs_mask_2d, attn_mask_2d, embedding_2d = self.forward_prediction_heads(output_2d, mask_features_2d, output_type="2d", attn_mask_target_size=size_list[0])
|
464 |
+
predictions_class_2d.append(outputs_class_2d)
|
465 |
+
predictions_mask_2d.append(outputs_mask_2d)
|
466 |
+
|
467 |
+
# pdb.set_trace()
|
468 |
+
for i in range(self.num_layers):
|
469 |
+
level_index = i % self.num_feature_levels
|
470 |
+
attn_mask_2d[torch.where(attn_mask_2d.sum(-1) == attn_mask_2d.shape[-1])] = False
|
471 |
+
# attention: cross-attention first
|
472 |
+
output_2d = self.transformer_cross_attention_layers[i](
|
473 |
+
output_2d, src_2d[level_index],
|
474 |
+
memory_mask=attn_mask_2d,
|
475 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
476 |
+
pos=pos_2d[level_index], query_pos=query_embed_2d
|
477 |
+
)
|
478 |
+
|
479 |
+
output_2d = self.transformer_self_attention_layers[i](
|
480 |
+
output_2d, tgt_mask=None,
|
481 |
+
tgt_key_padding_mask=None,
|
482 |
+
query_pos=query_embed_2d
|
483 |
+
)
|
484 |
+
|
485 |
+
# FFN
|
486 |
+
output_2d = self.transformer_ffn_layers[i](
|
487 |
+
output_2d
|
488 |
+
)
|
489 |
+
|
490 |
+
outputs_class_2d, outputs_mask_2d, attn_mask_2d, embedding_2d = self.forward_prediction_heads(output_2d, mask_features_2d, output_type="2d", attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
|
491 |
+
predictions_class_2d.append(outputs_class_2d)
|
492 |
+
predictions_mask_2d.append(outputs_mask_2d)
|
493 |
+
|
494 |
+
assert len(predictions_class_2d) == self.num_layers + 1
|
495 |
+
|
496 |
+
out_2d = {
|
497 |
+
'pred_logits': predictions_class_2d[-1],
|
498 |
+
'pred_masks': predictions_mask_2d[-1],
|
499 |
+
'aux_outputs': self._set_aux_loss(
|
500 |
+
predictions_class_2d if self.mask_classification else None, predictions_mask_2d
|
501 |
+
)
|
502 |
+
}
|
503 |
+
|
504 |
+
predictions_class_3d = []
|
505 |
+
predictions_mask_3d = []
|
506 |
+
|
507 |
+
query_embed_3d = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
508 |
+
|
509 |
+
output_3d = self.make_3d(output_2d, query_embed_2d, query_embed_3d)
|
510 |
+
|
511 |
+
# self.fused
|
512 |
+
outputs_class_3d, outputs_mask_3d, attn_mask_3d, embedding_3d = self.forward_prediction_heads(output_3d, mask_features_3d, output_type="3d", attn_mask_target_size=size_list[0])
|
513 |
+
predictions_class_3d.append(outputs_class_3d)
|
514 |
+
predictions_mask_3d.append(outputs_mask_3d)
|
515 |
+
|
516 |
+
for i in range(self.num_layers):
|
517 |
+
level_index = i % self.num_feature_levels
|
518 |
+
attn_mask_3d[torch.where(attn_mask_3d.sum(-1) == attn_mask_3d.shape[-1])] = False
|
519 |
+
################# 3d (unified) #############
|
520 |
+
# attention: cross-attention first
|
521 |
+
output_3d = self.transformer_cross_attention_layers[i](
|
522 |
+
output_3d, src_3d[level_index],
|
523 |
+
memory_mask=attn_mask_3d,
|
524 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
525 |
+
pos=pos_3d[level_index], query_pos=query_embed_3d
|
526 |
+
)
|
527 |
+
|
528 |
+
output_3d = self.transformer_self_attention_layers[i](
|
529 |
+
output_3d, tgt_mask=None,
|
530 |
+
tgt_key_padding_mask=None,
|
531 |
+
query_pos=query_embed_3d
|
532 |
+
)
|
533 |
+
|
534 |
+
output_3d = self.transformer_ffn_layers[i](
|
535 |
+
output_3d
|
536 |
+
)
|
537 |
+
|
538 |
+
outputs_class_3d, outputs_mask_3d, attn_mask_3d, embedding_3d = self.forward_prediction_heads(output_3d, mask_features_3d, output_type="3d", attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
|
539 |
+
predictions_class_3d.append(outputs_class_3d)
|
540 |
+
predictions_mask_3d.append(outputs_mask_3d)
|
541 |
+
|
542 |
+
# assert len(predictions_class_3d) == self.num_layers + 1
|
543 |
+
|
544 |
+
out_3d = {
|
545 |
+
'pred_logits': predictions_class_3d[-1],
|
546 |
+
'pred_masks': predictions_mask_3d[-1],
|
547 |
+
'aux_outputs': self._set_aux_loss(
|
548 |
+
predictions_class_3d if self.mask_classification else None, predictions_mask_3d
|
549 |
+
),
|
550 |
+
}
|
551 |
+
|
552 |
+
return out_2d, out_3d
|
553 |
+
|
554 |
+
def forward_prediction_heads(self, output, mask_features, output_type, attn_mask_target_size):
|
555 |
+
decoder_output = self.decoder_norm(output)
|
556 |
+
decoder_output = decoder_output.transpose(0, 1)
|
557 |
+
outputs_class = self.class_embed(decoder_output)
|
558 |
+
mask_embed = self.mask_embed(decoder_output)
|
559 |
+
if output_type == "3d":
|
560 |
+
outputs_mask = torch.einsum("bqc,btchw->bqthw", mask_embed, mask_features)
|
561 |
+
b, q, t, _, _ = outputs_mask.shape
|
562 |
+
# NOTE: prediction is of higher-resolution
|
563 |
+
# [B, Q, T, H, W] -> [B, Q, T*H*W] -> [B, h, Q, T*H*W] -> [B*h, Q, T*HW]
|
564 |
+
attn_mask = F.interpolate(outputs_mask.flatten(0, 1), size=attn_mask_target_size, mode="bilinear", align_corners=False).view(
|
565 |
+
b, q, t, attn_mask_target_size[0], attn_mask_target_size[1])
|
566 |
+
# must use bool type
|
567 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
568 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
569 |
+
attn_mask = attn_mask.detach()
|
570 |
+
elif output_type == "2d":
|
571 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
572 |
+
# NOTE: prediction is of higher-resolution
|
573 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
574 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
575 |
+
# must use bool type
|
576 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
577 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
578 |
+
attn_mask = attn_mask.detach()
|
579 |
+
else:
|
580 |
+
raise "the output_type should be 2d or 3d"
|
581 |
+
|
582 |
+
return outputs_class, outputs_mask, attn_mask, decoder_output
|
583 |
+
|
584 |
+
@torch.jit.unused
|
585 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks):
|
586 |
+
# this is a workaround to make torchscript happy, as torchscript
|
587 |
+
# doesn't support dictionary with non-homogeneous values, such
|
588 |
+
# as a dict having both a Tensor and a list.
|
589 |
+
if self.mask_classification:
|
590 |
+
return [
|
591 |
+
{"pred_logits": a, "pred_masks": b}
|
592 |
+
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
|
593 |
+
]
|
594 |
+
else:
|
595 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
annotator/entityseg/mask2former/modeling/transformer_decoder/mask2former_transformer_decoder.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import logging
|
4 |
+
import fvcore.nn.weight_init as weight_init
|
5 |
+
from typing import Optional
|
6 |
+
import torch
|
7 |
+
from torch import nn, Tensor
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from detectron2.config import configurable
|
11 |
+
from detectron2.layers import Conv2d
|
12 |
+
|
13 |
+
from .position_encoding import PositionEmbeddingSine
|
14 |
+
from .maskformer_transformer_decoder import TRANSFORMER_DECODER_REGISTRY
|
15 |
+
|
16 |
+
|
17 |
+
class SelfAttentionLayer(nn.Module):
|
18 |
+
|
19 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
20 |
+
activation="relu", normalize_before=False):
|
21 |
+
super().__init__()
|
22 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
23 |
+
|
24 |
+
self.norm = nn.LayerNorm(d_model)
|
25 |
+
self.dropout = nn.Dropout(dropout)
|
26 |
+
|
27 |
+
self.activation = _get_activation_fn(activation)
|
28 |
+
self.normalize_before = normalize_before
|
29 |
+
|
30 |
+
self._reset_parameters()
|
31 |
+
|
32 |
+
def _reset_parameters(self):
|
33 |
+
for p in self.parameters():
|
34 |
+
if p.dim() > 1:
|
35 |
+
nn.init.xavier_uniform_(p)
|
36 |
+
|
37 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
38 |
+
return tensor if pos is None else tensor + pos
|
39 |
+
|
40 |
+
def forward_post(self, tgt,
|
41 |
+
tgt_mask: Optional[Tensor] = None,
|
42 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
43 |
+
query_pos: Optional[Tensor] = None):
|
44 |
+
q = k = self.with_pos_embed(tgt, query_pos)
|
45 |
+
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
46 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
47 |
+
tgt = tgt + self.dropout(tgt2)
|
48 |
+
tgt = self.norm(tgt)
|
49 |
+
|
50 |
+
return tgt
|
51 |
+
|
52 |
+
def forward_pre(self, tgt,
|
53 |
+
tgt_mask: Optional[Tensor] = None,
|
54 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
55 |
+
query_pos: Optional[Tensor] = None):
|
56 |
+
tgt2 = self.norm(tgt)
|
57 |
+
q = k = self.with_pos_embed(tgt2, query_pos)
|
58 |
+
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
59 |
+
key_padding_mask=tgt_key_padding_mask)[0]
|
60 |
+
tgt = tgt + self.dropout(tgt2)
|
61 |
+
|
62 |
+
return tgt
|
63 |
+
|
64 |
+
def forward(self, tgt,
|
65 |
+
tgt_mask: Optional[Tensor] = None,
|
66 |
+
tgt_key_padding_mask: Optional[Tensor] = None,
|
67 |
+
query_pos: Optional[Tensor] = None):
|
68 |
+
if self.normalize_before:
|
69 |
+
return self.forward_pre(tgt, tgt_mask,
|
70 |
+
tgt_key_padding_mask, query_pos)
|
71 |
+
return self.forward_post(tgt, tgt_mask,
|
72 |
+
tgt_key_padding_mask, query_pos)
|
73 |
+
|
74 |
+
|
75 |
+
class CrossAttentionLayer(nn.Module):
|
76 |
+
|
77 |
+
def __init__(self, d_model, nhead, dropout=0.0,
|
78 |
+
activation="relu", normalize_before=False):
|
79 |
+
super().__init__()
|
80 |
+
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
81 |
+
|
82 |
+
self.norm = nn.LayerNorm(d_model)
|
83 |
+
self.dropout = nn.Dropout(dropout)
|
84 |
+
|
85 |
+
self.activation = _get_activation_fn(activation)
|
86 |
+
self.normalize_before = normalize_before
|
87 |
+
|
88 |
+
self._reset_parameters()
|
89 |
+
|
90 |
+
def _reset_parameters(self):
|
91 |
+
for p in self.parameters():
|
92 |
+
if p.dim() > 1:
|
93 |
+
nn.init.xavier_uniform_(p)
|
94 |
+
|
95 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
96 |
+
return tensor if pos is None else tensor + pos
|
97 |
+
|
98 |
+
def forward_post(self, tgt, memory,
|
99 |
+
memory_mask: Optional[Tensor] = None,
|
100 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
101 |
+
pos: Optional[Tensor] = None,
|
102 |
+
query_pos: Optional[Tensor] = None):
|
103 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
104 |
+
key=self.with_pos_embed(memory, pos),
|
105 |
+
value=memory, attn_mask=memory_mask,
|
106 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
107 |
+
tgt = tgt + self.dropout(tgt2)
|
108 |
+
tgt = self.norm(tgt)
|
109 |
+
|
110 |
+
return tgt
|
111 |
+
|
112 |
+
def forward_pre(self, tgt, memory,
|
113 |
+
memory_mask: Optional[Tensor] = None,
|
114 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
115 |
+
pos: Optional[Tensor] = None,
|
116 |
+
query_pos: Optional[Tensor] = None):
|
117 |
+
tgt2 = self.norm(tgt)
|
118 |
+
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
119 |
+
key=self.with_pos_embed(memory, pos),
|
120 |
+
value=memory, attn_mask=memory_mask,
|
121 |
+
key_padding_mask=memory_key_padding_mask)[0]
|
122 |
+
tgt = tgt + self.dropout(tgt2)
|
123 |
+
|
124 |
+
return tgt
|
125 |
+
|
126 |
+
def forward(self, tgt, memory,
|
127 |
+
memory_mask: Optional[Tensor] = None,
|
128 |
+
memory_key_padding_mask: Optional[Tensor] = None,
|
129 |
+
pos: Optional[Tensor] = None,
|
130 |
+
query_pos: Optional[Tensor] = None):
|
131 |
+
if self.normalize_before:
|
132 |
+
return self.forward_pre(tgt, memory, memory_mask,
|
133 |
+
memory_key_padding_mask, pos, query_pos)
|
134 |
+
return self.forward_post(tgt, memory, memory_mask,
|
135 |
+
memory_key_padding_mask, pos, query_pos)
|
136 |
+
|
137 |
+
|
138 |
+
class FFNLayer(nn.Module):
|
139 |
+
|
140 |
+
def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
|
141 |
+
activation="relu", normalize_before=False):
|
142 |
+
super().__init__()
|
143 |
+
# Implementation of Feedforward model
|
144 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
145 |
+
self.dropout = nn.Dropout(dropout)
|
146 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
147 |
+
|
148 |
+
self.norm = nn.LayerNorm(d_model)
|
149 |
+
|
150 |
+
self.activation = _get_activation_fn(activation)
|
151 |
+
self.normalize_before = normalize_before
|
152 |
+
|
153 |
+
self._reset_parameters()
|
154 |
+
|
155 |
+
def _reset_parameters(self):
|
156 |
+
for p in self.parameters():
|
157 |
+
if p.dim() > 1:
|
158 |
+
nn.init.xavier_uniform_(p)
|
159 |
+
|
160 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
161 |
+
return tensor if pos is None else tensor + pos
|
162 |
+
|
163 |
+
def forward_post(self, tgt):
|
164 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
165 |
+
tgt = tgt + self.dropout(tgt2)
|
166 |
+
tgt = self.norm(tgt)
|
167 |
+
return tgt
|
168 |
+
|
169 |
+
def forward_pre(self, tgt):
|
170 |
+
tgt2 = self.norm(tgt)
|
171 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
172 |
+
tgt = tgt + self.dropout(tgt2)
|
173 |
+
return tgt
|
174 |
+
|
175 |
+
def forward(self, tgt):
|
176 |
+
if self.normalize_before:
|
177 |
+
return self.forward_pre(tgt)
|
178 |
+
return self.forward_post(tgt)
|
179 |
+
|
180 |
+
|
181 |
+
def _get_activation_fn(activation):
|
182 |
+
"""Return an activation function given a string"""
|
183 |
+
if activation == "relu":
|
184 |
+
return F.relu
|
185 |
+
if activation == "gelu":
|
186 |
+
return F.gelu
|
187 |
+
if activation == "glu":
|
188 |
+
return F.glu
|
189 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
190 |
+
|
191 |
+
|
192 |
+
class MLP(nn.Module):
|
193 |
+
""" Very simple multi-layer perceptron (also called FFN)"""
|
194 |
+
|
195 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
196 |
+
super().__init__()
|
197 |
+
self.num_layers = num_layers
|
198 |
+
h = [hidden_dim] * (num_layers - 1)
|
199 |
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
for i, layer in enumerate(self.layers):
|
203 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
204 |
+
return x
|
205 |
+
|
206 |
+
|
207 |
+
@TRANSFORMER_DECODER_REGISTRY.register()
|
208 |
+
class MultiScaleMaskedTransformerDecoder(nn.Module):
|
209 |
+
|
210 |
+
_version = 2
|
211 |
+
|
212 |
+
def _load_from_state_dict(
|
213 |
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
214 |
+
):
|
215 |
+
version = local_metadata.get("version", None)
|
216 |
+
if version is None or version < 2:
|
217 |
+
# Do not warn if train from scratch
|
218 |
+
scratch = True
|
219 |
+
logger = logging.getLogger(__name__)
|
220 |
+
for k in list(state_dict.keys()):
|
221 |
+
newk = k
|
222 |
+
if "static_query" in k:
|
223 |
+
newk = k.replace("static_query", "query_feat")
|
224 |
+
if newk != k:
|
225 |
+
state_dict[newk] = state_dict[k]
|
226 |
+
del state_dict[k]
|
227 |
+
scratch = False
|
228 |
+
|
229 |
+
if not scratch:
|
230 |
+
logger.warning(
|
231 |
+
f"Weight format of {self.__class__.__name__} have changed! "
|
232 |
+
"Please upgrade your models. Applying automatic conversion now ..."
|
233 |
+
)
|
234 |
+
|
235 |
+
@configurable
|
236 |
+
def __init__(
|
237 |
+
self,
|
238 |
+
in_channels,
|
239 |
+
mask_classification=True,
|
240 |
+
*,
|
241 |
+
num_classes: int,
|
242 |
+
hidden_dim: int,
|
243 |
+
num_queries: int,
|
244 |
+
nheads: int,
|
245 |
+
dim_feedforward: int,
|
246 |
+
dec_layers: int,
|
247 |
+
pre_norm: bool,
|
248 |
+
mask_dim: int,
|
249 |
+
enforce_input_project: bool,
|
250 |
+
):
|
251 |
+
"""
|
252 |
+
NOTE: this interface is experimental.
|
253 |
+
Args:
|
254 |
+
in_channels: channels of the input features
|
255 |
+
mask_classification: whether to add mask classifier or not
|
256 |
+
num_classes: number of classes
|
257 |
+
hidden_dim: Transformer feature dimension
|
258 |
+
num_queries: number of queries
|
259 |
+
nheads: number of heads
|
260 |
+
dim_feedforward: feature dimension in feedforward network
|
261 |
+
enc_layers: number of Transformer encoder layers
|
262 |
+
dec_layers: number of Transformer decoder layers
|
263 |
+
pre_norm: whether to use pre-LayerNorm or not
|
264 |
+
mask_dim: mask feature dimension
|
265 |
+
enforce_input_project: add input project 1x1 conv even if input
|
266 |
+
channels and hidden dim is identical
|
267 |
+
"""
|
268 |
+
super().__init__()
|
269 |
+
|
270 |
+
assert mask_classification, "Only support mask classification model"
|
271 |
+
self.mask_classification = mask_classification
|
272 |
+
|
273 |
+
# positional encoding
|
274 |
+
N_steps = hidden_dim // 2
|
275 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
276 |
+
|
277 |
+
# define Transformer decoder here
|
278 |
+
self.num_heads = nheads
|
279 |
+
self.num_layers = dec_layers
|
280 |
+
self.transformer_self_attention_layers = nn.ModuleList()
|
281 |
+
self.transformer_cross_attention_layers = nn.ModuleList()
|
282 |
+
self.transformer_ffn_layers = nn.ModuleList()
|
283 |
+
|
284 |
+
for _ in range(self.num_layers):
|
285 |
+
self.transformer_self_attention_layers.append(
|
286 |
+
SelfAttentionLayer(
|
287 |
+
d_model=hidden_dim,
|
288 |
+
nhead=nheads,
|
289 |
+
dropout=0.0,
|
290 |
+
normalize_before=pre_norm,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
|
294 |
+
self.transformer_cross_attention_layers.append(
|
295 |
+
CrossAttentionLayer(
|
296 |
+
d_model=hidden_dim,
|
297 |
+
nhead=nheads,
|
298 |
+
dropout=0.0,
|
299 |
+
normalize_before=pre_norm,
|
300 |
+
)
|
301 |
+
)
|
302 |
+
|
303 |
+
self.transformer_ffn_layers.append(
|
304 |
+
FFNLayer(
|
305 |
+
d_model=hidden_dim,
|
306 |
+
dim_feedforward=dim_feedforward,
|
307 |
+
dropout=0.0,
|
308 |
+
normalize_before=pre_norm,
|
309 |
+
)
|
310 |
+
)
|
311 |
+
|
312 |
+
self.decoder_norm = nn.LayerNorm(hidden_dim)
|
313 |
+
|
314 |
+
self.num_queries = num_queries
|
315 |
+
# learnable query features
|
316 |
+
self.query_feat = nn.Embedding(num_queries, hidden_dim)
|
317 |
+
# learnable query p.e.
|
318 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
319 |
+
|
320 |
+
# level embedding (we always use 3 scales)
|
321 |
+
self.num_feature_levels = 3
|
322 |
+
self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
|
323 |
+
self.input_proj = nn.ModuleList()
|
324 |
+
for _ in range(self.num_feature_levels):
|
325 |
+
if in_channels != hidden_dim or enforce_input_project:
|
326 |
+
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
|
327 |
+
weight_init.c2_xavier_fill(self.input_proj[-1])
|
328 |
+
else:
|
329 |
+
self.input_proj.append(nn.Sequential())
|
330 |
+
|
331 |
+
# output FFNs
|
332 |
+
if self.mask_classification:
|
333 |
+
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
|
334 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
335 |
+
|
336 |
+
@classmethod
|
337 |
+
def from_config(cls, cfg, in_channels, mask_classification):
|
338 |
+
ret = {}
|
339 |
+
ret["in_channels"] = in_channels
|
340 |
+
ret["mask_classification"] = mask_classification
|
341 |
+
|
342 |
+
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
|
343 |
+
ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
|
344 |
+
ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
|
345 |
+
# Transformer parameters:
|
346 |
+
ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
347 |
+
ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
348 |
+
|
349 |
+
# NOTE: because we add learnable query features which requires supervision,
|
350 |
+
# we add minus 1 to decoder layers to be consistent with our loss
|
351 |
+
# implementation: that is, number of auxiliary losses is always
|
352 |
+
# equal to number of decoder layers. With learnable query features, the number of
|
353 |
+
# auxiliary losses equals number of decoders plus 1.
|
354 |
+
assert cfg.MODEL.MASK_FORMER.DEC_LAYERS >= 1
|
355 |
+
ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS - 1
|
356 |
+
ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
357 |
+
ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ
|
358 |
+
|
359 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
360 |
+
|
361 |
+
return ret
|
362 |
+
|
363 |
+
def forward(self, x, mask_features, mask = None):
|
364 |
+
# x is a list of multi-scale feature
|
365 |
+
assert len(x) == self.num_feature_levels
|
366 |
+
src = []
|
367 |
+
pos = []
|
368 |
+
size_list = []
|
369 |
+
|
370 |
+
# disable mask, it does not affect performance
|
371 |
+
del mask
|
372 |
+
|
373 |
+
for i in range(self.num_feature_levels):
|
374 |
+
size_list.append(x[i].shape[-2:])
|
375 |
+
pos.append(self.pe_layer(x[i], None).flatten(2))
|
376 |
+
src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])
|
377 |
+
|
378 |
+
# flatten NxCxHxW to HWxNxC
|
379 |
+
pos[-1] = pos[-1].permute(2, 0, 1)
|
380 |
+
src[-1] = src[-1].permute(2, 0, 1)
|
381 |
+
|
382 |
+
_, bs, _ = src[0].shape
|
383 |
+
|
384 |
+
# QxNxC
|
385 |
+
query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
|
386 |
+
output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
|
387 |
+
|
388 |
+
predictions_class = []
|
389 |
+
predictions_mask = []
|
390 |
+
|
391 |
+
# prediction heads on learnable query features
|
392 |
+
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0])
|
393 |
+
predictions_class.append(outputs_class)
|
394 |
+
predictions_mask.append(outputs_mask)
|
395 |
+
|
396 |
+
for i in range(self.num_layers):
|
397 |
+
level_index = i % self.num_feature_levels
|
398 |
+
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
|
399 |
+
# attention: cross-attention first
|
400 |
+
output = self.transformer_cross_attention_layers[i](
|
401 |
+
output, src[level_index],
|
402 |
+
memory_mask=attn_mask,
|
403 |
+
memory_key_padding_mask=None, # here we do not apply masking on padded region
|
404 |
+
pos=pos[level_index], query_pos=query_embed
|
405 |
+
)
|
406 |
+
|
407 |
+
output = self.transformer_self_attention_layers[i](
|
408 |
+
output, tgt_mask=None,
|
409 |
+
tgt_key_padding_mask=None,
|
410 |
+
query_pos=query_embed
|
411 |
+
)
|
412 |
+
|
413 |
+
# FFN
|
414 |
+
output = self.transformer_ffn_layers[i](
|
415 |
+
output
|
416 |
+
)
|
417 |
+
|
418 |
+
outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
|
419 |
+
predictions_class.append(outputs_class)
|
420 |
+
predictions_mask.append(outputs_mask)
|
421 |
+
|
422 |
+
assert len(predictions_class) == self.num_layers + 1
|
423 |
+
|
424 |
+
out = {
|
425 |
+
'pred_logits': predictions_class[-1],
|
426 |
+
'pred_masks': predictions_mask[-1],
|
427 |
+
'aux_outputs': self._set_aux_loss(
|
428 |
+
predictions_class if self.mask_classification else None, predictions_mask
|
429 |
+
)
|
430 |
+
}
|
431 |
+
return out
|
432 |
+
|
433 |
+
def forward_prediction_heads(self, output, mask_features, attn_mask_target_size):
|
434 |
+
decoder_output = self.decoder_norm(output)
|
435 |
+
decoder_output = decoder_output.transpose(0, 1)
|
436 |
+
outputs_class = self.class_embed(decoder_output)
|
437 |
+
mask_embed = self.mask_embed(decoder_output)
|
438 |
+
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
439 |
+
|
440 |
+
# NOTE: prediction is of higher-resolution
|
441 |
+
# [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
|
442 |
+
attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
|
443 |
+
# must use bool type
|
444 |
+
# If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
|
445 |
+
attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
|
446 |
+
attn_mask = attn_mask.detach()
|
447 |
+
|
448 |
+
return outputs_class, outputs_mask, attn_mask
|
449 |
+
|
450 |
+
@torch.jit.unused
|
451 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks):
|
452 |
+
# this is a workaround to make torchscript happy, as torchscript
|
453 |
+
# doesn't support dictionary with non-homogeneous values, such
|
454 |
+
# as a dict having both a Tensor and a list.
|
455 |
+
if self.mask_classification:
|
456 |
+
return [
|
457 |
+
{"pred_logits": a, "pred_masks": b}
|
458 |
+
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
|
459 |
+
]
|
460 |
+
else:
|
461 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
annotator/entityseg/mask2former/modeling/transformer_decoder/maskformer_transformer_decoder.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
|
3 |
+
import fvcore.nn.weight_init as weight_init
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from detectron2.config import configurable
|
9 |
+
from detectron2.layers import Conv2d
|
10 |
+
from detectron2.utils.registry import Registry
|
11 |
+
|
12 |
+
from .position_encoding import PositionEmbeddingSine
|
13 |
+
from .transformer import Transformer
|
14 |
+
|
15 |
+
|
16 |
+
TRANSFORMER_DECODER_REGISTRY = Registry("TRANSFORMER_MODULE")
|
17 |
+
TRANSFORMER_DECODER_REGISTRY.__doc__ = """
|
18 |
+
Registry for transformer module in MaskFormer.
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
def build_transformer_decoder(cfg, in_channels, mask_classification=True):
|
23 |
+
"""
|
24 |
+
Build a instance embedding branch from `cfg.MODEL.INS_EMBED_HEAD.NAME`.
|
25 |
+
"""
|
26 |
+
name = cfg.MODEL.MASK_FORMER.TRANSFORMER_DECODER_NAME
|
27 |
+
return TRANSFORMER_DECODER_REGISTRY.get(name)(cfg, in_channels, mask_classification)
|
28 |
+
|
29 |
+
|
30 |
+
@TRANSFORMER_DECODER_REGISTRY.register()
|
31 |
+
class StandardTransformerDecoder(nn.Module):
|
32 |
+
@configurable
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels,
|
36 |
+
mask_classification=True,
|
37 |
+
*,
|
38 |
+
num_classes: int,
|
39 |
+
hidden_dim: int,
|
40 |
+
num_queries: int,
|
41 |
+
nheads: int,
|
42 |
+
dropout: float,
|
43 |
+
dim_feedforward: int,
|
44 |
+
enc_layers: int,
|
45 |
+
dec_layers: int,
|
46 |
+
pre_norm: bool,
|
47 |
+
deep_supervision: bool,
|
48 |
+
mask_dim: int,
|
49 |
+
enforce_input_project: bool,
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
NOTE: this interface is experimental.
|
53 |
+
Args:
|
54 |
+
in_channels: channels of the input features
|
55 |
+
mask_classification: whether to add mask classifier or not
|
56 |
+
num_classes: number of classes
|
57 |
+
hidden_dim: Transformer feature dimension
|
58 |
+
num_queries: number of queries
|
59 |
+
nheads: number of heads
|
60 |
+
dropout: dropout in Transformer
|
61 |
+
dim_feedforward: feature dimension in feedforward network
|
62 |
+
enc_layers: number of Transformer encoder layers
|
63 |
+
dec_layers: number of Transformer decoder layers
|
64 |
+
pre_norm: whether to use pre-LayerNorm or not
|
65 |
+
deep_supervision: whether to add supervision to every decoder layers
|
66 |
+
mask_dim: mask feature dimension
|
67 |
+
enforce_input_project: add input project 1x1 conv even if input
|
68 |
+
channels and hidden dim is identical
|
69 |
+
"""
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.mask_classification = mask_classification
|
73 |
+
|
74 |
+
# positional encoding
|
75 |
+
N_steps = hidden_dim // 2
|
76 |
+
self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
|
77 |
+
|
78 |
+
transformer = Transformer(
|
79 |
+
d_model=hidden_dim,
|
80 |
+
dropout=dropout,
|
81 |
+
nhead=nheads,
|
82 |
+
dim_feedforward=dim_feedforward,
|
83 |
+
num_encoder_layers=enc_layers,
|
84 |
+
num_decoder_layers=dec_layers,
|
85 |
+
normalize_before=pre_norm,
|
86 |
+
return_intermediate_dec=deep_supervision,
|
87 |
+
)
|
88 |
+
|
89 |
+
self.num_queries = num_queries
|
90 |
+
self.transformer = transformer
|
91 |
+
hidden_dim = transformer.d_model
|
92 |
+
|
93 |
+
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
94 |
+
|
95 |
+
if in_channels != hidden_dim or enforce_input_project:
|
96 |
+
self.input_proj = Conv2d(in_channels, hidden_dim, kernel_size=1)
|
97 |
+
weight_init.c2_xavier_fill(self.input_proj)
|
98 |
+
else:
|
99 |
+
self.input_proj = nn.Sequential()
|
100 |
+
self.aux_loss = deep_supervision
|
101 |
+
|
102 |
+
# output FFNs
|
103 |
+
if self.mask_classification:
|
104 |
+
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
|
105 |
+
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_config(cls, cfg, in_channels, mask_classification):
|
109 |
+
ret = {}
|
110 |
+
ret["in_channels"] = in_channels
|
111 |
+
ret["mask_classification"] = mask_classification
|
112 |
+
|
113 |
+
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
|
114 |
+
ret["hidden_dim"] = cfg.MODEL.MASK_FORMER.HIDDEN_DIM
|
115 |
+
ret["num_queries"] = cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES
|
116 |
+
# Transformer parameters:
|
117 |
+
ret["nheads"] = cfg.MODEL.MASK_FORMER.NHEADS
|
118 |
+
ret["dropout"] = cfg.MODEL.MASK_FORMER.DROPOUT
|
119 |
+
ret["dim_feedforward"] = cfg.MODEL.MASK_FORMER.DIM_FEEDFORWARD
|
120 |
+
ret["enc_layers"] = cfg.MODEL.MASK_FORMER.ENC_LAYERS
|
121 |
+
ret["dec_layers"] = cfg.MODEL.MASK_FORMER.DEC_LAYERS
|
122 |
+
ret["pre_norm"] = cfg.MODEL.MASK_FORMER.PRE_NORM
|
123 |
+
ret["deep_supervision"] = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
|
124 |
+
ret["enforce_input_project"] = cfg.MODEL.MASK_FORMER.ENFORCE_INPUT_PROJ
|
125 |
+
|
126 |
+
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
|
127 |
+
|
128 |
+
return ret
|
129 |
+
|
130 |
+
def forward(self, x, mask_features, mask=None):
|
131 |
+
if mask is not None:
|
132 |
+
mask = F.interpolate(mask[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
133 |
+
pos = self.pe_layer(x, mask)
|
134 |
+
|
135 |
+
src = x
|
136 |
+
hs, memory = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos)
|
137 |
+
|
138 |
+
if self.mask_classification:
|
139 |
+
outputs_class = self.class_embed(hs)
|
140 |
+
out = {"pred_logits": outputs_class[-1]}
|
141 |
+
else:
|
142 |
+
out = {}
|
143 |
+
|
144 |
+
if self.aux_loss:
|
145 |
+
# [l, bs, queries, embed]
|
146 |
+
mask_embed = self.mask_embed(hs)
|
147 |
+
outputs_seg_masks = torch.einsum("lbqc,bchw->lbqhw", mask_embed, mask_features)
|
148 |
+
out["pred_masks"] = outputs_seg_masks[-1]
|
149 |
+
out["aux_outputs"] = self._set_aux_loss(
|
150 |
+
outputs_class if self.mask_classification else None, outputs_seg_masks
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
# FIXME h_boxes takes the last one computed, keep this in mind
|
154 |
+
# [bs, queries, embed]
|
155 |
+
mask_embed = self.mask_embed(hs[-1])
|
156 |
+
outputs_seg_masks = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
|
157 |
+
out["pred_masks"] = outputs_seg_masks
|
158 |
+
return out
|
159 |
+
|
160 |
+
@torch.jit.unused
|
161 |
+
def _set_aux_loss(self, outputs_class, outputs_seg_masks):
|
162 |
+
# this is a workaround to make torchscript happy, as torchscript
|
163 |
+
# doesn't support dictionary with non-homogeneous values, such
|
164 |
+
# as a dict having both a Tensor and a list.
|
165 |
+
if self.mask_classification:
|
166 |
+
return [
|
167 |
+
{"pred_logits": a, "pred_masks": b}
|
168 |
+
for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
|
169 |
+
]
|
170 |
+
else:
|
171 |
+
return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]
|
172 |
+
|
173 |
+
|
174 |
+
class MLP(nn.Module):
|
175 |
+
"""Very simple multi-layer perceptron (also called FFN)"""
|
176 |
+
|
177 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
178 |
+
super().__init__()
|
179 |
+
self.num_layers = num_layers
|
180 |
+
h = [hidden_dim] * (num_layers - 1)
|
181 |
+
self.layers = nn.ModuleList(
|
182 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
183 |
+
)
|
184 |
+
|
185 |
+
def forward(self, x):
|
186 |
+
for i, layer in enumerate(self.layers):
|
187 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
188 |
+
return x
|
annotator/entityseg/mask2former/modeling/transformer_decoder/position_encoding.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
# # Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/position_encoding.py
|
3 |
+
"""
|
4 |
+
Various positional encodings for the transformer.
|
5 |
+
"""
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
class PositionEmbeddingSine(nn.Module):
|
13 |
+
"""
|
14 |
+
This is a more standard version of the position embedding, very similar to the one
|
15 |
+
used by the Attention is all you need paper, generalized to work on images.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
19 |
+
super().__init__()
|
20 |
+
self.num_pos_feats = num_pos_feats
|
21 |
+
self.temperature = temperature
|
22 |
+
self.normalize = normalize
|
23 |
+
if scale is not None and normalize is False:
|
24 |
+
raise ValueError("normalize should be True if scale is passed")
|
25 |
+
if scale is None:
|
26 |
+
scale = 2 * math.pi
|
27 |
+
self.scale = scale
|
28 |
+
|
29 |
+
def forward(self, x, mask=None):
|
30 |
+
if mask is None:
|
31 |
+
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool)
|
32 |
+
not_mask = ~mask
|
33 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
34 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
35 |
+
if self.normalize:
|
36 |
+
eps = 1e-6
|
37 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
38 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
39 |
+
|
40 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
41 |
+
# dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
42 |
+
dim_t = self.temperature ** (2 * (torch.div(dim_t, 2, rounding_mode="trunc")) / self.num_pos_feats)
|
43 |
+
|
44 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
45 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
46 |
+
pos_x = torch.stack(
|
47 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
48 |
+
).flatten(3)
|
49 |
+
pos_y = torch.stack(
|
50 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
51 |
+
).flatten(3)
|
52 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
53 |
+
return pos
|
54 |
+
|
55 |
+
def __repr__(self, _repr_indent=4):
|
56 |
+
head = "Positional encoding " + self.__class__.__name__
|
57 |
+
body = [
|
58 |
+
"num_pos_feats: {}".format(self.num_pos_feats),
|
59 |
+
"temperature: {}".format(self.temperature),
|
60 |
+
"normalize: {}".format(self.normalize),
|
61 |
+
"scale: {}".format(self.scale),
|
62 |
+
]
|
63 |
+
# _repr_indent = 4
|
64 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
65 |
+
return "\n".join(lines)
|
66 |
+
|
67 |
+
class PositionEmbeddingSine3D2D(nn.Module):
|
68 |
+
"""
|
69 |
+
This is a more standard version of the position embedding, very similar to the one
|
70 |
+
used by the Attention is all you need paper, generalized to work on images.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
74 |
+
super().__init__()
|
75 |
+
self.num_pos_feats = num_pos_feats
|
76 |
+
self.temperature = temperature
|
77 |
+
self.normalize = normalize
|
78 |
+
if scale is not None and normalize is False:
|
79 |
+
raise ValueError("normalize should be True if scale is passed")
|
80 |
+
if scale is None:
|
81 |
+
scale = 2 * math.pi
|
82 |
+
self.scale = scale
|
83 |
+
|
84 |
+
def forward(self, x, mask=None):
|
85 |
+
## b, t, c, h, w
|
86 |
+
assert x.dim()==5, f"{x.shape} should be a 5-dimensional Tensor, got {x.dim()}-dimensional Tensor instead"
|
87 |
+
if mask is None:
|
88 |
+
mask = torch.zeros((x.size(0), x.size(1), x.size(3), x.size(4)), device=x.device, dtype=torch.bool)
|
89 |
+
not_mask = ~mask
|
90 |
+
z_embed = not_mask.cumsum(1, dtype=torch.float32)
|
91 |
+
y_embed = not_mask.cumsum(2, dtype=torch.float32)
|
92 |
+
x_embed = not_mask.cumsum(3, dtype=torch.float32)
|
93 |
+
if self.normalize:
|
94 |
+
eps = 1e-6
|
95 |
+
z_embed = z_embed / (z_embed[:, -1:, :, :] + eps) * self.scale
|
96 |
+
y_embed = y_embed / (y_embed[:, :, -1:, :] + eps) * self.scale
|
97 |
+
x_embed = x_embed / (x_embed[:, :, :, -1:] + eps) * self.scale
|
98 |
+
|
99 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
100 |
+
# dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
101 |
+
dim_t = self.temperature ** (2 * (torch.div(dim_t, 2, rounding_mode="trunc")) / self.num_pos_feats)
|
102 |
+
|
103 |
+
dim_t_z = torch.arange((self.num_pos_feats * 2), dtype=torch.float32, device=x.device)
|
104 |
+
# dim_t_z = self.temperature ** (2 * (dim_t_z // 2) / (self.num_pos_feats * 2))
|
105 |
+
dim_t_z = self.temperature ** (2 * (torch.div(dim_t_z, 2, rounding_mode="trunc")) / (self.num_pos_feats*2))
|
106 |
+
|
107 |
+
pos_x = x_embed[:, :, :, :, None] / dim_t
|
108 |
+
pos_y = y_embed[:, :, :, :, None] / dim_t
|
109 |
+
pos_z = z_embed[:, :, :, :, None] / dim_t_z
|
110 |
+
|
111 |
+
pos_x = torch.stack(
|
112 |
+
(pos_x[:, :, :, :, 0::2].sin(), pos_x[:, :, :, :, 1::2].cos()), dim=5
|
113 |
+
).flatten(4)
|
114 |
+
pos_y = torch.stack(
|
115 |
+
(pos_y[:, :, :, :, 0::2].sin(), pos_y[:, :, :, :, 1::2].cos()), dim=5
|
116 |
+
).flatten(4)
|
117 |
+
pos_z = torch.stack(
|
118 |
+
(pos_z[:, :, :, :, 0::2].sin(), pos_z[:, :, :, :, 1::2].cos()), dim=5
|
119 |
+
).flatten(4)
|
120 |
+
pos2d = torch.cat((pos_y, pos_x), dim=4).permute(0, 1, 4, 2, 3).flatten(0,1)
|
121 |
+
pos3d = (torch.cat((pos_y, pos_x), dim=4) + pos_z).permute(0, 1, 4, 2, 3)
|
122 |
+
return pos2d, pos3d
|
123 |
+
|
124 |
+
def __repr__(self, _repr_indent=4):
|
125 |
+
head = "Positional encoding " + self.__class__.__name__
|
126 |
+
body = [
|
127 |
+
"num_pos_feats: {}".format(self.num_pos_feats),
|
128 |
+
"temperature: {}".format(self.temperature),
|
129 |
+
"normalize: {}".format(self.normalize),
|
130 |
+
"scale: {}".format(self.scale),
|
131 |
+
]
|
132 |
+
# _repr_indent = 4
|
133 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
134 |
+
return "\n".join(lines)
|