File size: 3,116 Bytes
64d9fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5ecc25
 
64d9fb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
from facenet_pytorch import InceptionResnetV1
import torch.nn as nn
import torchvision.transforms as tf
import numpy as np
import torch
import faiss
import h5py
import os
import random
from PIL import Image
import matplotlib.cm as cm
import matplotlib as mpl




img_names = []
with open('list_eval_partition.txt', 'r') as f:
    for line in f:
        img_name, dtype = line.rstrip().split(' ')
        img_names.append(img_name)
        

# For a model pretrained on VGGFace2
print('Loading model weights ........')

class SiameseModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.backbone = InceptionResnetV1(pretrained='vggface2')
    def forward(self, x):
        x = self.backbone(x)
        x = torch.nn.functional.normalize(x, dim=1)
        return x
    
model = SiameseModel()
model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu')))
print("____________LOADED___________________")
model.eval()


# Make FAISS index
print('Make index .............')
index = faiss.IndexFlatL2(512)

hf = h5py.File('face_vecs_full.h5', 'r')
for key in hf.keys():
    vec = np.array(hf.get(key))
    index.add(vec)

hf.close()

# Function to search image
def image_search(image, k=5):
    
    transform = tf.Compose([
        tf.Resize((160, 160)),
        tf.ToTensor()
    ])

    query_img = transform(image)
    query_img = torch.unsqueeze(query_img, 0)

    model.eval()
    query_vec = model(query_img).detach().numpy()

    D, I = index.search(query_vec, k=k)

    retrieval_imgs = []
    
    FOLDER = 'img_align_celeba'
    for idx in I[0]:
        img_file_name = img_names[idx]
        path = os.path.join(FOLDER, img_file_name)

        image = Image.open(path)
        retrieval_imgs.append((image, ''))
        
    return retrieval_imgs

with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown('''
    
    
    # Face Image Retrieval with Content-based Retrieval Image (CBIR) & Saliency Map
    --------
    
    
    ''')
    
    with gr.Row():
        with gr.Column():
            image = gr.Image(type='pil', scale=1)
            slider = gr.Slider(1, 10, value=5, step=1, label='Number of retrieval image')
            with gr.Row():
                btn = gr.Button('Search')
                clear_btn = gr.ClearButton()
        
        gallery = gr.Gallery(label='Retrieval Images', columns=[5], show_label=True, scale=2)
        
    img_dir = './img_align_celeba'    
    examples = random.choices(img_names, k=6)
    examples = [os.path.join(img_dir, ex) for ex in examples]
    examples = [Image.open(img) for img in examples]
                                  
    with gr.Row():
        gr.Examples(
            examples = examples,
            inputs = image
        )
            
            
    btn.click(image_search, 
              inputs= [image, slider], 
              outputs= [gallery])
    
    def clear_image():
        return None
    
    clear_btn.click(
        fn = clear_image,
        inputs = [],
        outputs = [image]
    )

    
if __name__ == "__main__":
    demo.launch()