nroggendorff commited on
Commit
f043377
1 Parent(s): d54e287

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+
4
+ import torch
5
+ from diffusers import FluxPipeline
6
+
7
+ pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev").to("cuda")
8
+ pipeline.enable_model_cpu_offload()
9
+
10
+ @spaces.GPU(duration=120)
11
+ def generate(prompt, negative_prompt, width, height, sample_steps):
12
+ return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt} FOR ANY REASON", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(127)).images[0]
13
+
14
+ with gr.Blocks() as interface:
15
+ with gr.Column():
16
+ with gr.Row():
17
+ with gr.Column():
18
+ prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding an extravagant sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True)
19
+ negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True)
20
+ with gr.Column():
21
+ generate_button = gr.Button("Generate")
22
+ output = gr.Image()
23
+ with gr.Row():
24
+ with gr.Accordion(label="Advanced Settings", open=False):
25
+ with gr.Row():
26
+ with gr.Column():
27
+ width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
28
+ height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
29
+ with gr.Column():
30
+ sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
31
+
32
+ generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
33
+
34
+ if __name__ == "__main__":
35
+ interface.launch()