Spaces:
Starting
on
A10G
Starting
on
A10G
File size: 6,810 Bytes
d72e6ae 892e2f9 d72e6ae 632f592 9547c62 632f592 9547c62 ab391c2 d72e6ae b225b76 632f592 ab391c2 070377f 5720fe4 b225b76 a04f2e1 070377f a04f2e1 070377f 411ad3b 070377f 411ad3b d72e6ae 062ca1d 070377f d72e6ae 070377f 4aafa13 93fda42 ab391c2 93fda42 070377f d72e6ae ba5c790 070377f aa518eb 070377f 411ad3b aa518eb 411ad3b 070377f ba5c790 070377f d72e6ae 861cd57 070377f 632f592 070377f 632f592 d72e6ae 632f592 d72e6ae 070377f 9547c62 d72e6ae 070377f 632f592 070377f d72e6ae 070377f 93fda42 9547c62 070377f 892e2f9 070377f 93fda42 070377f d72e6ae f9b4329 070377f a04f2e1 070377f f9b4329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
from sys import exit
import torch
import trl
from transformers import (
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from trl import SFTConfig, SFTTrainer
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from itertools import islice
from typing import Optional
from logging import getLogger, StreamHandler, INFO
logger = getLogger(__name__)
logger.setLevel(INFO)
handler = StreamHandler()
logger.addHandler(handler)
class Config:
# Model and training hyperparameters
BATCH_SIZE = 16
EPOCHS = 3
LEARNING_RATE = 2e-4
MAX_SEQ_LENGTH = 512
VOCAB_SIZE = 32000
FP16 = True
WEIGHT_DECAY = 1e-3
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // 4
# Dataset configurations
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
SHARD_SIZE = int(2e+5)
# Output and repo settings
OUTPUT_REPO = "nroggendorff/smallama"
PUSH_TO_HUB = True
INSTRUCT_FINETUNE_BOOL = False
# Training steps and warmup
FACTOR = 12 ** 3 // 3
TOTAL_STEPS = (SHARD_SIZE * EPOCHS) // (BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)
WARMUP_STEPS = int(TOTAL_STEPS * 0.1)
# Initial state for shard offset
INIT = 0
class Space:
def __init__(self):
self.api = HfApi()
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
space = Space()
class FineError(Exception):
def __init__(self, message="Training completed successfully."):
self.message = message
super().__init__(self.message)
def load_data(dataset_name: str, split: str, shard_size: int, init_offset: int = 0) -> Dataset:
dataset = load_dataset(dataset_name, split=split, streaming=True)
shard_start = init_offset * shard_size
data_list = list(islice(dataset, shard_start, shard_start + shard_size))
return Dataset.from_dict({'text': [example.get('text', '') for example in data_list]})
def encode_decode(texts, tokenizer):
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenized_texts = tokenizer(
texts, padding="max_length", truncation=True, max_length=Config.MAX_SEQ_LENGTH, return_tensors="pt"
).input_ids
return tokenizer.batch_decode(tokenized_texts) if tokenized_texts.dim() >= 1 else [tokenizer.pad_token * Config.MAX_SEQ_LENGTH]
def create_tokenizer(training_corpus):
tokenizer = ByteLevelBPETokenizer()
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
tokenizer.train_from_iterator(training_corpus, vocab_size=Config.VOCAB_SIZE, min_frequency=2, special_tokens=special_tokens)
return PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
def load_tokenizer(repo: str):
return AutoTokenizer.from_pretrained(repo)
def get_training_corpus(dataset):
for i in range(0, len(dataset['text']), 1000):
yield dataset['text'][i : i + 1000]
def format_prompts(examples, tokenizer, is_instructional):
texts = []
for text in examples['text']:
if text and len(text.strip()) > 0:
if is_instructional:
conversation = []
parts = text.split('<|end|>')
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].replace("<|user|>", "").strip()
response = parts[i + 1].replace("<|bot|>", "").strip()
conversation.append({"role": "user", "content": prompt})
conversation.append({"role": "assistant", "content": response})
coded_text = tokenizer.code(tokenizer.apply_chat_template(conversation, tokenize=False))
texts.append(coded_text)
else:
texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
if not texts:
raise ValueError("No valid texts found in examples for formatting.")
return {'text': tokenizer.code(texts)}
def create_model(tokenizer):
config = LlamaConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=Config.FACTOR,
intermediate_size=Config.FACTOR * 4,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=Config.MAX_SEQ_LENGTH,
rms_norm_eps=1e-5,
initializer_range=0.02,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
tie_word_embeddings=False,
)
return LlamaForCausalLM(config)
def train_model(model, tokenizer, dataset, push_to_hub, is_instructional):
config = SFTConfig(
output_dir="model",
num_train_epochs=Config.EPOCHS,
per_device_train_batch_size=Config.BATCH_SIZE,
learning_rate=Config.LEARNING_RATE,
warmup_steps=Config.WARMUP_STEPS,
weight_decay=Config.WEIGHT_DECAY,
gradient_accumulation_steps=Config.GRADIENT_ACCUMULATION_STEPS,
fp16=Config.FP16,
save_steps=int(Config.WARMUP_STEPS * 5),
logging_steps=int(Config.WARMUP_STEPS),
save_total_limit=2,
report_to="none",
)
dataset = dataset.map(
lambda examples: format_prompts(examples, tokenizer, is_instructional),
batched=True,
remove_columns=dataset.column_names
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
config=config,
train_dataset=dataset
)
train_result = trainer.train()
if push_to_hub:
repo_id = Config.OUTPUT_REPO + "-it" if Config.INSTRUCT_FINETUNE_BOOL else Config.OUTPUT_REPO
trainer.model.push_to_hub(repo_id, commit_message=f"Training loss: {train_result.training_loss:.4f}", force=True)
trainer.tokenizer.push_to_hub(repo_id, commit_message=f"Training loss: {train_result.training_loss:.4f}", force=True)
else:
trainer.model.save_pretrained("model")
trainer.tokenizer.save_pretrained("tokenizer")
def main():
dataset = load_data(Config.INPUT_DATASET, "train", Config.SHARD_SIZE, Config.INIT)
tokenizer = (
load_tokenizer(Config.OUTPUT_REPO)
if Config.INSTRUCT_FINETUNE_BOOL and Config.INIT > 0
else create_tokenizer(get_training_corpus(dataset))
)
model = (
load_model()
if Config.INSTRUCT_FINETUNE_BOOL or Config.INIT > 0
else create_model(tokenizer)
)
train_model(model, tokenizer, dataset, Config.PUSH_TO_HUB, Config.INSTRUCT_FINETUNE_BOOL)
if __name__ == "__main__":
try:
main()
except Exception as e:
logger.error(f"{type(e).__name__}: {e}")
space.pause() |