Spaces:
Runtime error
Runtime error
File size: 2,004 Bytes
9ab3040 d289671 da3c10d 9ab3040 43352bf 9ab3040 aed8f76 9ab3040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import spaces
import torch
from diffusers import StableDiffusionXLPipeline
pipeline = StableDiffusionXLPipeline.from_pretrained("nroggendorff/animexl")
pipeline.load_lora_weights("nroggendorff/zelda-lora")
pipeline.to("cuda")
@spaces.GPU
def generate(prompt, negative_prompt, width, height, sample_steps):
return pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0]
with gr.Blocks() as interface:
with gr.Column():
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="A perfectly red apple, 32k HDR", lines=4, interactive=True)
negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality, jewelry", lines=4, interactive=True)
with gr.Column():
generate_button = gr.Button("Generate")
output = gr.Image()
with gr.Row():
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
with gr.Column():
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=1024, minimum=128, maximum=4096, step=64, interactive=True)
with gr.Column():
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
if __name__ == "__main__":
interface.launch() |