File size: 25,445 Bytes
d0bfdd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
import os
import random
from abc import ABC, abstractmethod
from contextlib import contextmanager
from functools import partial
from typing import Any, Dict, List, Literal, Optional, Union, cast
import numpy as np
import ray
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from safetensors.torch import load_file
from torch import nn
from torch.distributed.fsdp import (
BackwardPrefetch,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp.wrap import (
lambda_auto_wrap_policy,
transformer_auto_wrap_policy,
)
from transformers import T5EncoderModel, T5Tokenizer
from transformers.models.t5.modeling_t5 import T5Block
import genmo.mochi_preview.dit.joint_model.context_parallel as cp
import genmo.mochi_preview.vae.cp_conv as cp_conv
from genmo.mochi_preview.vae.model import Decoder, apply_tiled
from genmo.lib.progress import get_new_progress_bar, progress_bar
from genmo.lib.utils import Timer
def linear_quadratic_schedule(num_steps, threshold_noise, linear_steps=None):
if linear_steps is None:
linear_steps = num_steps // 2
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
quadratic_steps = num_steps - linear_steps
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
const = quadratic_coef * (linear_steps**2)
quadratic_sigma_schedule = [
quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
]
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
sigma_schedule = [1.0 - x for x in sigma_schedule]
return sigma_schedule
T5_MODEL = "google/t5-v1_1-xxl"
MAX_T5_TOKEN_LENGTH = 256
def setup_fsdp_sync(model, device_id, *, param_dtype, auto_wrap_policy) -> FSDP:
model = FSDP(
model,
sharding_strategy=ShardingStrategy.FULL_SHARD,
mixed_precision=MixedPrecision(
param_dtype=param_dtype,
reduce_dtype=torch.float32,
buffer_dtype=torch.float32,
),
auto_wrap_policy=auto_wrap_policy,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
limit_all_gathers=True,
device_id=device_id,
sync_module_states=True,
use_orig_params=True,
)
torch.cuda.synchronize()
return model
class ModelFactory(ABC):
def __init__(self, **kwargs):
self.kwargs = kwargs
@abstractmethod
def get_model(self, *, local_rank: int, device_id: Union[int, Literal["cpu"]], world_size: int) -> Any:
if device_id == "cpu":
assert world_size == 1, "CPU offload only supports single-GPU inference"
class T5ModelFactory(ModelFactory):
def __init__(self):
super().__init__()
def get_model(self, *, local_rank, device_id, world_size):
super().get_model(local_rank=local_rank, device_id=device_id, world_size=world_size)
model = T5EncoderModel.from_pretrained(T5_MODEL)
if world_size > 1:
model = setup_fsdp_sync(
model,
device_id=device_id,
param_dtype=torch.float32,
auto_wrap_policy=partial(
transformer_auto_wrap_policy,
transformer_layer_cls={
T5Block,
},
),
)
elif isinstance(device_id, int):
model = model.to(torch.device(f"cuda:{device_id}")) # type: ignore
return model.eval()
class DitModelFactory(ModelFactory):
def __init__(self, *, model_path: str, model_dtype: str, attention_mode: Optional[str] = None):
if attention_mode is None:
from genmo.lib.attn_imports import flash_varlen_qkvpacked_attn # type: ignore
attention_mode = "sdpa" if flash_varlen_qkvpacked_attn is None else "flash"
print(f"Attention mode: {attention_mode}")
super().__init__(model_path=model_path, model_dtype=model_dtype, attention_mode=attention_mode)
def get_model(self, *, local_rank, device_id, world_size):
# TODO(ved): Set flag for torch.compile
from genmo.mochi_preview.dit.joint_model.asymm_models_joint import (
AsymmDiTJoint,
)
model: nn.Module = torch.nn.utils.skip_init(
AsymmDiTJoint,
depth=48,
patch_size=2,
num_heads=24,
hidden_size_x=3072,
hidden_size_y=1536,
mlp_ratio_x=4.0,
mlp_ratio_y=4.0,
in_channels=12,
qk_norm=True,
qkv_bias=False,
out_bias=True,
patch_embed_bias=True,
timestep_mlp_bias=True,
timestep_scale=1000.0,
t5_feat_dim=4096,
t5_token_length=256,
rope_theta=10000.0,
attention_mode=self.kwargs["attention_mode"],
)
if local_rank == 0:
# FSDP syncs weights from rank 0 to all other ranks
model.load_state_dict(load_file(self.kwargs["model_path"]))
if world_size > 1:
assert self.kwargs["model_dtype"] == "bf16", "FP8 is not supported for multi-GPU inference"
model = setup_fsdp_sync(
model,
device_id=device_id,
param_dtype=torch.bfloat16,
auto_wrap_policy=partial(
lambda_auto_wrap_policy,
lambda_fn=lambda m: m in model.blocks,
),
)
elif isinstance(device_id, int):
model = model.to(torch.device(f"cuda:{device_id}"))
return model.eval()
class DecoderModelFactory(ModelFactory):
def __init__(self, *, model_path: str, model_stats_path: str):
super().__init__(model_path=model_path, model_stats_path=model_stats_path)
def get_model(self, *, local_rank, device_id, world_size):
# TODO(ved): Set flag for torch.compile
# TODO(ved): Use skip_init
import json
decoder = Decoder(
out_channels=3,
base_channels=128,
channel_multipliers=[1, 2, 4, 6],
temporal_expansions=[1, 2, 3],
spatial_expansions=[2, 2, 2],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
has_attention=[False, False, False, False, False],
padding_mode="replicate",
output_norm=False,
nonlinearity="silu",
output_nonlinearity="silu",
causal=True,
)
# VAE is not FSDP-wrapped
state_dict = load_file(self.kwargs["model_path"])
decoder.load_state_dict(state_dict, strict=True)
device = torch.device(f"cuda:{device_id}") if isinstance(device_id, int) else "cpu"
decoder.eval().to(device)
vae_stats = json.load(open(self.kwargs["model_stats_path"]))
decoder.register_buffer("vae_mean", torch.tensor(vae_stats["mean"], device=device))
decoder.register_buffer("vae_std", torch.tensor(vae_stats["std"], device=device))
return decoder
def get_conditioning(tokenizer, encoder, device, batch_inputs, *, prompt: str, negative_prompt: str):
if batch_inputs:
return dict(batched=get_conditioning_for_prompts(tokenizer, encoder, device, [prompt, negative_prompt]))
else:
cond_input = get_conditioning_for_prompts(tokenizer, encoder, device, [prompt])
null_input = get_conditioning_for_prompts(tokenizer, encoder, device, [negative_prompt])
return dict(cond=cond_input, null=null_input)
def get_conditioning_for_prompts(tokenizer, encoder, device, prompts: List[str]):
assert len(prompts) in [1, 2] # [neg] or [pos] or [pos, neg]
B = len(prompts)
t5_toks = tokenizer(
prompts,
padding="max_length",
truncation=True,
max_length=MAX_T5_TOKEN_LENGTH,
return_tensors="pt",
return_attention_mask=True,
)
caption_input_ids_t5 = t5_toks["input_ids"]
caption_attention_mask_t5 = t5_toks["attention_mask"].bool()
del t5_toks
assert caption_input_ids_t5.shape == (B, MAX_T5_TOKEN_LENGTH)
assert caption_attention_mask_t5.shape == (B, MAX_T5_TOKEN_LENGTH)
# Special-case empty negative prompt by zero-ing it
if prompts[-1] == "":
caption_input_ids_t5[-1] = 0
caption_attention_mask_t5[-1] = False
caption_input_ids_t5 = caption_input_ids_t5.to(device, non_blocking=True)
caption_attention_mask_t5 = caption_attention_mask_t5.to(device, non_blocking=True)
y_mask = [caption_attention_mask_t5]
y_feat = [encoder(caption_input_ids_t5, caption_attention_mask_t5).last_hidden_state.detach()]
# Sometimes returns a tensor, othertimes a tuple, not sure why
# See: https://huggingface.co/genmo/mochi-1-preview/discussions/3
assert tuple(y_feat[-1].shape) == (B, MAX_T5_TOKEN_LENGTH, 4096)
assert y_feat[-1].dtype == torch.float32
return dict(y_mask=y_mask, y_feat=y_feat)
def compute_packed_indices(
device: torch.device, text_mask: torch.Tensor, num_latents: int
) -> Dict[str, Union[torch.Tensor, int]]:
"""
Based on https://github.com/Dao-AILab/flash-attention/blob/765741c1eeb86c96ee71a3291ad6968cfbf4e4a1/flash_attn/bert_padding.py#L60-L80
Args:
num_latents: Number of latent tokens
text_mask: (B, L) List of boolean tensor indicating which text tokens are not padding.
Returns:
packed_indices: Dict with keys for Flash Attention:
- valid_token_indices_kv: up to (B * (N + L),) tensor of valid token indices (non-padding)
in the packed sequence.
- cu_seqlens_kv: (B + 1,) tensor of cumulative sequence lengths in the packed sequence.
- max_seqlen_in_batch_kv: int of the maximum sequence length in the batch.
"""
# Create an expanded token mask saying which tokens are valid across both visual and text tokens.
PATCH_SIZE = 2
num_visual_tokens = num_latents // (PATCH_SIZE**2)
assert num_visual_tokens > 0
mask = F.pad(text_mask, (num_visual_tokens, 0), value=True) # (B, N + L)
seqlens_in_batch = mask.sum(dim=-1, dtype=torch.int32) # (B,)
valid_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten() # up to (B * (N + L),)
assert valid_token_indices.size(0) >= text_mask.size(0) * num_visual_tokens # At least (B * N,)
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
max_seqlen_in_batch = seqlens_in_batch.max().item()
return {
"cu_seqlens_kv": cu_seqlens.to(device, non_blocking=True),
"max_seqlen_in_batch_kv": cast(int, max_seqlen_in_batch),
"valid_token_indices_kv": valid_token_indices.to(device, non_blocking=True),
}
def assert_eq(x, y, msg=None):
assert x == y, f"{msg or 'Assertion failed'}: {x} != {y}"
def sample_model(device, dit, conditioning, **args):
random.seed(args["seed"])
np.random.seed(args["seed"])
torch.manual_seed(args["seed"])
generator = torch.Generator(device=device)
generator.manual_seed(args["seed"])
w, h, t = args["width"], args["height"], args["num_frames"]
sample_steps = args["num_inference_steps"]
cfg_schedule = args["cfg_schedule"]
sigma_schedule = args["sigma_schedule"]
assert_eq(len(cfg_schedule), sample_steps, "cfg_schedule must have length sample_steps")
assert_eq((t - 1) % 6, 0, "t - 1 must be divisible by 6")
assert_eq(
len(sigma_schedule),
sample_steps + 1,
"sigma_schedule must have length sample_steps + 1",
)
B = 1
SPATIAL_DOWNSAMPLE = 8
TEMPORAL_DOWNSAMPLE = 6
IN_CHANNELS = 12
latent_t = ((t - 1) // TEMPORAL_DOWNSAMPLE) + 1
latent_w, latent_h = w // SPATIAL_DOWNSAMPLE, h // SPATIAL_DOWNSAMPLE
z = torch.randn(
(B, IN_CHANNELS, latent_t, latent_h, latent_w),
device=device,
dtype=torch.float32,
)
num_latents = latent_t * latent_h * latent_w
cond_batched = cond_text = cond_null = None
if "cond" in conditioning:
cond_text = conditioning["cond"]
cond_null = conditioning["null"]
cond_text["packed_indices"] = compute_packed_indices(device, cond_text["y_mask"][0], num_latents)
cond_null["packed_indices"] = compute_packed_indices(device, cond_null["y_mask"][0], num_latents)
else:
cond_batched = conditioning["batched"]
cond_batched["packed_indices"] = compute_packed_indices(device, cond_batched["y_mask"][0], num_latents)
z = repeat(z, "b ... -> (repeat b) ...", repeat=2)
def model_fn(*, z, sigma, cfg_scale):
if cond_batched:
with torch.autocast("cuda", dtype=torch.bfloat16):
out = dit(z, sigma, **cond_batched)
out_cond, out_uncond = torch.chunk(out, chunks=2, dim=0)
else:
nonlocal cond_text, cond_null
with torch.autocast("cuda", dtype=torch.bfloat16):
out_cond = dit(z, sigma, **cond_text)
out_uncond = dit(z, sigma, **cond_null)
assert out_cond.shape == out_uncond.shape
return out_uncond + cfg_scale * (out_cond - out_uncond), out_cond
for i in get_new_progress_bar(range(0, sample_steps), desc="Sampling"):
sigma = sigma_schedule[i]
dsigma = sigma - sigma_schedule[i + 1]
# `pred` estimates `z_0 - eps`.
pred, output_cond = model_fn(
z=z,
sigma=torch.full([B] if cond_text else [B * 2], sigma, device=z.device),
cfg_scale=cfg_schedule[i],
)
pred = pred.to(z)
output_cond = output_cond.to(z)
z = z + dsigma * pred
return z[:B] if cond_batched else z
def decoded_latents_to_frames(samples):
samples = samples.float()
samples = (samples + 1.0) / 2.0
samples.clamp_(0.0, 1.0)
frames = rearrange(samples, "b c t h w -> b t h w c")
return frames
def decode_latents(decoder, z):
cp_rank, cp_size = cp.get_cp_rank_size()
z = z.tensor_split(cp_size, dim=2)[cp_rank] # split along temporal dim
with torch.autocast("cuda", dtype=torch.bfloat16):
samples = decoder(z)
samples = cp_conv.gather_all_frames(samples)
return decoded_latents_to_frames(samples)
@torch.inference_mode()
def decode_latents_tiled_full(
decoder,
z,
*,
tile_sample_min_height: int = 240,
tile_sample_min_width: int = 424,
tile_overlap_factor_height: float = 0.1666,
tile_overlap_factor_width: float = 0.2,
auto_tile_size: bool = True,
frame_batch_size: int = 6,
):
B, C, T, H, W = z.shape
assert frame_batch_size <= T, f"frame_batch_size must be <= T, got {frame_batch_size} > {T}"
tile_sample_min_height = tile_sample_min_height if not auto_tile_size else H // 2 * 8
tile_sample_min_width = tile_sample_min_width if not auto_tile_size else W // 2 * 8
tile_latent_min_height = int(tile_sample_min_height / 8)
tile_latent_min_width = int(tile_sample_min_width / 8)
def blend_v(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
overlap_height = int(tile_latent_min_height * (1 - tile_overlap_factor_height))
overlap_width = int(tile_latent_min_width * (1 - tile_overlap_factor_width))
blend_extent_height = int(tile_sample_min_height * tile_overlap_factor_height)
blend_extent_width = int(tile_sample_min_width * tile_overlap_factor_width)
row_limit_height = tile_sample_min_height - blend_extent_height
row_limit_width = tile_sample_min_width - blend_extent_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
pbar = get_new_progress_bar(
desc="Decoding latent tiles",
total=len(range(0, H, overlap_height)) * len(range(0, W, overlap_width)) * len(range(T // frame_batch_size)),
)
rows = []
for i in range(0, H, overlap_height):
row = []
for j in range(0, W, overlap_width):
temporal = []
for k in range(T // frame_batch_size):
remaining_frames = T % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = z[
:,
:,
start_frame:end_frame,
i : i + tile_latent_min_height,
j : j + tile_latent_min_width,
]
tile = decoder(tile)
temporal.append(tile)
pbar.update(1)
row.append(torch.cat(temporal, dim=2))
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
return decoded_latents_to_frames(torch.cat(result_rows, dim=3))
@torch.inference_mode()
def decode_latents_tiled_spatial(
decoder,
z,
*,
num_tiles_w: int,
num_tiles_h: int,
overlap: int = 0, # Number of pixel of overlap between adjacent tiles.
# Use a factor of 2 times the latent downsample factor.
min_block_size: int = 1, # Minimum number of pixels in each dimension when subdividing.
):
decoded = apply_tiled(decoder, z, num_tiles_w, num_tiles_h, overlap, min_block_size)
assert decoded is not None, f"Failed to decode latents with tiled spatial method"
return decoded
@contextmanager
def move_to_device(model: nn.Module, target_device):
og_device = next(model.parameters()).device
if og_device == target_device:
print(f"move_to_device is a no-op model is already on {target_device}")
else:
print(f"moving model from {og_device} -> {target_device}")
model.to(target_device)
yield
if og_device != target_device:
print(f"moving model from {target_device} -> {og_device}")
model.to(og_device)
def t5_tokenizer():
return T5Tokenizer.from_pretrained(T5_MODEL, legacy=False)
class MochiSingleGPUPipeline:
def __init__(
self,
*,
text_encoder_factory: ModelFactory,
dit_factory: ModelFactory,
decoder_factory: ModelFactory,
cpu_offload: Optional[bool] = False,
decode_type: str = "full",
decode_args: Optional[Dict[str, Any]] = None,
):
self.device = torch.device("cuda:0")
self.tokenizer = t5_tokenizer()
t = Timer()
self.cpu_offload = cpu_offload
self.decode_args = decode_args or {}
self.decode_type = decode_type
init_id = "cpu" if cpu_offload else 0
with t("load_text_encoder"):
self.text_encoder = text_encoder_factory.get_model(
local_rank=0,
device_id=init_id,
world_size=1,
)
with t("load_dit"):
self.dit = dit_factory.get_model(local_rank=0, device_id=init_id, world_size=1)
with t("load_vae"):
self.decoder = decoder_factory.get_model(local_rank=0, device_id=init_id, world_size=1)
t.print_stats()
def __call__(self, batch_cfg, prompt, negative_prompt, **kwargs):
with progress_bar(type="tqdm"), torch.inference_mode():
print_max_memory = lambda: print(
f"Max memory reserved: {torch.cuda.max_memory_reserved() / 1024**3:.2f} GB"
)
print_max_memory()
with move_to_device(self.text_encoder, self.device):
conditioning = get_conditioning(
self.tokenizer,
self.text_encoder,
self.device,
batch_cfg,
prompt=prompt,
negative_prompt=negative_prompt,
)
print_max_memory()
with move_to_device(self.dit, self.device):
latents = sample_model(self.device, self.dit, conditioning, **kwargs)
print_max_memory()
with move_to_device(self.decoder, self.device):
frames = (
decode_latents_tiled_full(self.decoder, latents, **self.decode_args)
if self.decode_type == "tiled_full"
else
decode_latents_tiled_spatial(self.decoder, latents, **self.decode_args)
if self.decode_type == "tiled_spatial"
else decode_latents(self.decoder, latents)
)
print_max_memory()
return frames.cpu().numpy()
### ALL CODE BELOW HERE IS FOR MULTI-GPU MODE ###
# In multi-gpu mode, all models must belong to a device which has a predefined context parallel group
# So it doesn't make sense to work with models individually
class MultiGPUContext:
def __init__(
self,
*,
text_encoder_factory,
dit_factory,
decoder_factory,
device_id,
local_rank,
world_size,
):
t = Timer()
self.device = torch.device(f"cuda:{device_id}")
print(f"Initializing rank {local_rank+1}/{world_size}")
assert world_size > 1, f"Multi-GPU mode requires world_size > 1, got {world_size}"
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "29500"
with t("init_process_group"):
dist.init_process_group(
"nccl",
rank=local_rank,
world_size=world_size,
device_id=self.device, # force non-lazy init
)
pg = dist.group.WORLD
cp.set_cp_group(pg, list(range(world_size)), local_rank)
distributed_kwargs = dict(local_rank=local_rank, device_id=device_id, world_size=world_size)
self.world_size = world_size
self.tokenizer = t5_tokenizer()
with t("load_text_encoder"):
self.text_encoder = text_encoder_factory.get_model(**distributed_kwargs)
with t("load_dit"):
self.dit = dit_factory.get_model(**distributed_kwargs)
with t("load_vae"):
self.decoder = decoder_factory.get_model(**distributed_kwargs)
self.local_rank = local_rank
t.print_stats()
def run(self, *, fn, **kwargs):
return fn(self, **kwargs)
class MochiMultiGPUPipeline:
def __init__(
self,
*,
text_encoder_factory: ModelFactory,
dit_factory: ModelFactory,
decoder_factory: ModelFactory,
world_size: int,
):
ray.init()
RemoteClass = ray.remote(MultiGPUContext)
self.ctxs = [
RemoteClass.options(num_gpus=1).remote(
text_encoder_factory=text_encoder_factory,
dit_factory=dit_factory,
decoder_factory=decoder_factory,
world_size=world_size,
device_id=0,
local_rank=i,
)
for i in range(world_size)
]
for ctx in self.ctxs:
ray.get(ctx.__ray_ready__.remote())
def __call__(self, **kwargs):
def sample(ctx, *, batch_cfg, prompt, negative_prompt, **kwargs):
with progress_bar(type="ray_tqdm", enabled=ctx.local_rank == 0), torch.inference_mode():
conditioning = get_conditioning(
ctx.tokenizer,
ctx.text_encoder,
ctx.device,
batch_cfg,
prompt=prompt,
negative_prompt=negative_prompt,
)
latents = sample_model(ctx.device, ctx.dit, conditioning=conditioning, **kwargs)
if ctx.local_rank == 0:
torch.save(latents, "latents.pt")
frames = decode_latents(ctx.decoder, latents)
return frames.cpu().numpy()
return ray.get([ctx.run.remote(fn=sample, **kwargs, show_progress=i == 0) for i, ctx in enumerate(self.ctxs)])[
0
]
|