nruto's picture
Upload 31 files
d0bfdd6 verified
raw
history blame
6.35 kB
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
"""
Pool tokens in x using mask.
NOTE: We assume x does not require gradients.
Args:
x: (B, L, D) tensor of tokens.
mask: (B, L) boolean tensor indicating which tokens are not padding.
Returns:
pooled: (B, D) tensor of pooled tokens.
"""
assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
mask = mask[:, :, None].to(dtype=x.dtype)
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
pooled = (x * mask).sum(dim=1, keepdim=keepdim)
return pooled
class AttentionPool(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
output_dim: int = None,
device: Optional[torch.device] = None,
):
"""
Args:
spatial_dim (int): Number of tokens in sequence length.
embed_dim (int): Dimensionality of input tokens.
num_heads (int): Number of attention heads.
output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.
"""
super().__init__()
self.num_heads = num_heads
self.to_kv = nn.Linear(embed_dim, 2 * embed_dim, device=device)
self.to_q = nn.Linear(embed_dim, embed_dim, device=device)
self.to_out = nn.Linear(embed_dim, output_dim or embed_dim, device=device)
def forward(self, x, mask):
"""
Args:
x (torch.Tensor): (B, L, D) tensor of input tokens.
mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.
NOTE: We assume x does not require gradients.
Returns:
x (torch.Tensor): (B, D) tensor of pooled tokens.
"""
D = x.size(2)
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
# Average non-padding token features. These will be used as the query.
x_pool = pool_tokens(x, mask, keepdim=True) # (B, 1, D)
# Concat pooled features to input sequence.
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
# Compute queries, keys, values. Only the mean token is used to create a query.
kv = self.to_kv(x) # (B, L+1, 2 * D)
q = self.to_q(x[:, 0]) # (B, D)
# Extract heads.
head_dim = D // self.num_heads
kv = kv.unflatten(2, (2, self.num_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
q = q.unflatten(1, (self.num_heads, head_dim)) # (B, H, head_dim)
q = q.unsqueeze(2) # (B, H, 1, head_dim)
# Compute attention.
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim)
# Concatenate heads and run output.
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
x = self.to_out(x)
return x
class PadSplitXY(torch.autograd.Function):
"""
Merge heads, pad and extract visual and text tokens,
and split along the sequence length.
"""
@staticmethod
def forward(
ctx,
xy: torch.Tensor,
indices: torch.Tensor,
B: int,
N: int,
L: int,
dtype: torch.dtype,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
xy: Packed tokens. Shape: (total <= B * (N + L), num_heads * head_dim).
indices: Valid token indices out of unpacked tensor. Shape: (total,)
Returns:
x: Visual tokens. Shape: (B, N, num_heads * head_dim).
y: Text tokens. Shape: (B, L, num_heads * head_dim).
"""
ctx.save_for_backward(indices)
ctx.B, ctx.N, ctx.L = B, N, L
D = xy.size(1)
# Pad sequences to (B, N + L, dim).
assert indices.ndim == 1
output = torch.zeros(B * (N + L), D, device=xy.device, dtype=dtype)
indices = indices.unsqueeze(1).expand(-1, D) # (total,) -> (total, num_heads * head_dim)
output.scatter_(0, indices, xy)
xy = output.view(B, N + L, D)
# Split visual and text tokens along the sequence length.
return torch.tensor_split(xy, (N,), dim=1)
def pad_and_split_xy(xy, indices, B, N, L, dtype) -> Tuple[torch.Tensor, torch.Tensor]:
return PadSplitXY.apply(xy, indices, B, N, L, dtype)
class UnifyStreams(torch.autograd.Function):
"""Unify visual and text streams."""
@staticmethod
def forward(
ctx,
q_x: torch.Tensor,
k_x: torch.Tensor,
v_x: torch.Tensor,
q_y: torch.Tensor,
k_y: torch.Tensor,
v_y: torch.Tensor,
indices: torch.Tensor,
):
"""
Args:
q_x: (B, N, num_heads, head_dim)
k_x: (B, N, num_heads, head_dim)
v_x: (B, N, num_heads, head_dim)
q_y: (B, L, num_heads, head_dim)
k_y: (B, L, num_heads, head_dim)
v_y: (B, L, num_heads, head_dim)
indices: (total <= B * (N + L))
Returns:
qkv: (total <= B * (N + L), 3, num_heads, head_dim)
"""
ctx.save_for_backward(indices)
B, N, num_heads, head_dim = q_x.size()
ctx.B, ctx.N, ctx.L = B, N, q_y.size(1)
D = num_heads * head_dim
q = torch.cat([q_x, q_y], dim=1)
k = torch.cat([k_x, k_y], dim=1)
v = torch.cat([v_x, v_y], dim=1)
qkv = torch.stack([q, k, v], dim=2).view(B * (N + ctx.L), 3, D)
indices = indices[:, None, None].expand(-1, 3, D)
qkv = torch.gather(qkv, 0, indices) # (total, 3, num_heads * head_dim)
return qkv.unflatten(2, (num_heads, head_dim))
def unify_streams(q_x, k_x, v_x, q_y, k_y, v_y, indices) -> torch.Tensor:
return UnifyStreams.apply(q_x, k_x, v_x, q_y, k_y, v_y, indices)