Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
|
8 |
-
def respond(
|
9 |
-
message,
|
10 |
-
history: list[tuple[str, str]],
|
11 |
-
system_message,
|
12 |
-
max_tokens,
|
13 |
-
temperature,
|
14 |
-
top_p,
|
15 |
-
):
|
16 |
messages = [{"role": "system", "content": system_message}]
|
17 |
|
18 |
for val in history:
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
5 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
|
8 |
+
prompt = "How many r in strawberry?"
|
9 |
+
messages = [{"role": "user", "content": prompt}]
|
10 |
|
11 |
+
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
|
12 |
+
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=4096, pad_token_id = tokenizer.eos_token_id)
|
13 |
+
generated_tokens =response_token_ids[:, len(tokenized_message['input_ids'][0]):]
|
14 |
+
generated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
15 |
+
print(generated_text)
|
16 |
|
17 |
+
# See response at top of model card
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
messages = [{"role": "system", "content": system_message}]
|
20 |
|
21 |
for val in history:
|