nruto commited on
Commit
79eb30f
1 Parent(s): 9f5ca96

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -103
app.py CHANGED
@@ -1,104 +1,64 @@
1
- # First, ensure you have the gradio module installed
2
- # You can install it using the following command:
3
- # !pip install gradio
4
-
5
  import gradio as gr
6
- import plotly.graph_objects as go # Import plotly for plotting
7
- import pandas as pd
8
- import os
9
-
10
- # Define the path for the Excel file
11
- EXCEL_FILE = 'vv.xlsx'
12
-
13
- # Initialize lists to store income and expenses
14
- income_list = []
15
- expense_list = []
16
-
17
- def add_income(amount, description):
18
- """Function to add income to the income list."""
19
- income_list.append({'amount': amount, 'description': description})
20
- return f"Added Income: {description} of amount {amount}"
21
-
22
- def add_expense(amount, description):
23
- """Function to add expense to the expense list."""
24
- expense_list.append({'amount': amount, 'description': description})
25
- return f"Added Expense: {description} of amount {amount}"
26
-
27
- def show_pie_chart(): # Define the function to show the pie chart
28
- """Function to create and return a pie chart of income and expenses."""
29
- # Calculate total income and expenses
30
- total_income = sum(item['amount'] for item in income_list)
31
- total_expenses = sum(item['amount'] for item in expense_list)
32
-
33
- # Calculate remaining income
34
- remaining_income = total_income - total_expenses
35
-
36
- # Check if there is any income or expenses to display
37
- if total_income == 0 and total_expenses == 0:
38
- return "No data to display" # Return a message if there's no data
39
-
40
- labels = ['Remaining Income', 'Expenses']
41
- sizes = [remaining_income, total_expenses]
42
-
43
- # Create a pie chart using plotly
44
- fig = go.Figure(data=[go.Pie(labels=labels, values=sizes, hole=.3)]) # Create a pie chart
45
- return fig # Return the figure to be displayed in Gradio
46
-
47
- def reset_data(): # Define the reset_data function
48
- """Function to reset income and expense data."""
49
- income_list.clear() # Clear the income list
50
- expense_list.clear() # Clear the expense list
51
- return "Data has been reset", 0, "", 0, "", None # Return reset values
52
-
53
- def logout(): # Define the logout function
54
- """Function to handle user logout."""
55
- return "Logged out successfully" # Return a logout message
56
-
57
- # Gradio interface
58
- with gr.Blocks(css="""
59
- .gradio-container { background-color: #c7e7a2; }
60
- .gr-button, .gr-button:hover {
61
- background-color: #caelf6;
62
- color: white;
63
- border: none;
64
- border-radius: 5px;
65
- padding: 10px;
66
- }
67
- .gr-button:hover { background-color: #feee91; }
68
- """) as demo:
69
-
70
- # Define main_app here before using it
71
- main_app = gr.Row(visible=True) # Set main_app to visible by default
72
-
73
- with main_app:
74
- welcome_message = gr.Textbox(label="Welcome Message", interactive=False, value="**WELCOME - khellon**") # Set initial value here
75
-
76
- # Create a row for income and expense sections
77
- with gr.Row():
78
- with gr.Column():
79
- income_amount = gr.Number(label="Income Amount", value=0)
80
- income_description = gr.Textbox(label="Income Description", value="")
81
- add_income_button = gr.Button("Add Income")
82
- add_income_output = gr.Textbox(label="Income Output", interactive=False) # Output for income
83
- add_income_button.click(add_income, inputs=[income_amount, income_description], outputs=add_income_output)
84
-
85
- with gr.Column():
86
- expense_amount = gr.Number(label="Expense Amount", value=0)
87
- expense_description = gr.Textbox(label="Expense Description", value="")
88
- add_expense_button = gr.Button("Add Expense")
89
- add_expense_output = gr.Textbox(label="Expense Output", interactive=False) # Output for expense
90
- add_expense_button.click(add_expense, inputs=[expense_amount, expense_description], outputs=add_expense_output)
91
-
92
- # Create a row for chart and reset/logout buttons
93
- with gr.Row():
94
- show_chart_button = gr.Button("Show Pie Chart")
95
- show_chart_output = gr.Plot()
96
- show_chart_button.click(show_pie_chart, outputs=show_chart_output)
97
-
98
- reset_button = gr.Button("Reset Data")
99
- reset_button.click(reset_data, outputs=[gr.Textbox(label="Output"), income_amount, income_description, expense_amount, expense_description, show_chart_output])
100
-
101
- logout_button = gr.Button("Logout") # Added logout button
102
- logout_button.click(logout, outputs=[main_app]) # Handle logout action
103
-
104
- demo.launch(share=True) # Create a public link
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
+
62
+
63
+ if __name__ == "__main__":
64
+ demo.launch()