ns-gradio-apps / pipeline_utils.py
nsethi610's picture
removed print statement
91fc66a verified
import gradio as gr
from task import tasks_config
from transformers import pipeline
def review_training_choices(choice):
if choice == "Use Pipeline":
return gr.Row(visible=True)
else:
return gr.Row(visible=False)
def task_dropdown_choices():
return [(task["name"], task_id)
for task_id, task in tasks_config.items()]
def handle_task_change(task):
visibility = task == "question-answering"
models = tasks_config[task]["config"]["models"]
model_choices = [(model, model) for model in models]
return gr.update(visible=visibility), gr.Dropdown(
choices=model_choices,
label="Model",
allow_custom_value=True,
interactive=True
), gr.Dropdown(info=tasks_config[task]["info"])
def test_pipeline(task, model=None, prompt=None, context=None):
# configure additional options for each model
options = {"ner": {"grouped_entities": True}, "question-answering": {},
"text-generation": {}, "fill-mask": {}, "summarization": {}}
# configure pipeline
test = pipeline(task, model=model, **
options[task]) if model else pipeline(task, **options[task])
# call pipeline
if task == "question-answering":
if not context:
return "Context is required"
else:
result = test(question=prompt, context=context)
else:
result = test(prompt)
# generated ouput based on task and return
output_mapping = {
"text-generation": lambda x: x[0]["generated_text"],
"fill-mask": lambda x: x[0]["sequence"],
"summarization": lambda x: x[0]["summary_text"],
"ner": lambda x: "\n".join(f"{k}={v}" for item in x for k, v in item.items() if k not in ["start", "end", "index"]).rstrip("\n"),
"question-answering": lambda x: x
}
return gr.TextArea(output_mapping[task](result))