import gradio as gr from task import tasks_config from transformers import pipeline def review_training_choices(choice): print(choice) if choice == "Use Pipeline": return gr.Row(visible=True) else: return gr.Row(visible=False) def task_dropdown_choices(): return [(task["name"], task_id) for task_id, task in tasks_config.items()] def handle_task_change(task): visibility = task == "question-answering" models = tasks_config[task]["config"]["models"] model_choices = [(model, model) for model in models] return gr.update(visible=visibility), gr.Dropdown( choices=model_choices, label="Model", allow_custom_value=True, interactive=True ), gr.Dropdown(info=tasks_config[task]["info"]) def test_pipeline(task, model=None, prompt=None, context=None): # configure additional options for each model options = {"ner": {"grouped_entities": True}, "question-answering": {}, "text-generation": {}, "fill-mask": {}, "summarization": {}} # configure pipeline test = pipeline(task, model=model, ** options[task]) if model else pipeline(task, **options[task]) # call pipeline if task == "question-answering": if not context: return "Context is required" else: result = test(question=prompt, context=context) else: result = test(prompt) # generated ouput based on task and return output_mapping = { "text-generation": lambda x: x[0]["generated_text"], "fill-mask": lambda x: x[0]["sequence"], "summarization": lambda x: x[0]["summary_text"], "ner": lambda x: "\n".join(f"{k}={v}" for item in x for k, v in item.items() if k not in ["start", "end", "index"]).rstrip("\n"), "question-answering": lambda x: x } return gr.TextArea(output_mapping[task](result))