File size: 8,386 Bytes
549a2cc
 
bb85d5e
b10dbaa
 
bb85d5e
549a2cc
a04f639
bb85d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b10dbaa
549a2cc
 
bb85d5e
 
 
 
 
 
a8969c3
b10dbaa
bb85d5e
01defef
b10dbaa
01defef
1df563c
b10dbaa
bb85d5e
 
b10dbaa
bb85d5e
b10dbaa
bb85d5e
 
5f1dd3f
bb85d5e
a472331
01defef
bb85d5e
ebc2ece
 
 
bb85d5e
ebc2ece
 
 
bb85d5e
ebc2ece
 
 
 
bb85d5e
 
6d4d03f
86f908d
 
bb85d5e
6d4d03f
b10dbaa
 
bb85d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1dd3f
bb85d5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8cff3
 
5f1dd3f
 
 
 
 
 
 
a472331
 
8a8cff3
 
bb85d5e
8a8cff3
5f1dd3f
8a8cff3
bb85d5e
 
 
b10dbaa
bb85d5e
 
 
 
391cfe9
886bf76
6d4d03f
bb85d5e
4482a4e
bb85d5e
 
ebc2ece
b10dbaa
 
bb85d5e
 
bbbf293
549a2cc
bb85d5e
01defef
49d14ca
 
 
bb85d5e
49d14ca
 
b10dbaa
 
bb85d5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import time

import folium
import pandas as pd
import requests
import streamlit as st
from folium import plugins
from huggingface_hub import HfApi
from streamlit_folium import st_folium

from src.text_content import (
    COLOR_MAPPING,
    CREDITS_TEXT,
    HEADERS_MAPPING,
    ICON_MAPPING,
    INTRO_TEXT_AR,
    INTRO_TEXT_EN,
    INTRO_TEXT_FR,
    LOGO,
    REVIEW_TEXT,
    SLOGAN,
)
from src.utils import init_map, parse_gg_sheet


TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)


# Initialize Streamlit Config
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")

# Initialize States
if "sleep_time" not in st.session_state:
    st.session_state.sleep_time = 2
if "auto_refresh" not in st.session_state:
    st.session_state.auto_refresh = False

# Session for Requests
session = requests.Session()

auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
if auto_refresh:
    number = st.sidebar.number_input(
        "Refresh rate in seconds", value=st.session_state.sleep_time
    )
    st.session_state.sleep_time = number


# Utility functions
@st.cache_data(persist=True)
def parse_latlng_from_link(url):
    try:
        # extract latitude and longitude from gmaps link
        if "@" not in url:
            resp = session.head(url, allow_redirects=True)
            url = resp.url
        latlng = url.split("@")[1].split(",")[0:2]
        return [float(latlng[0]), float(latlng[1])]
    except Exception as e:
        print(f"Error parsing latlng from link: {e}")
        return None


def parse_gg_sheet_interventions(url):
    url = url.replace("edit#gid=", "export?format=csv&gid=")
    print(url)
    df = pd.read_csv(url, on_bad_lines="skip")
    return df.assign(latlng=df.iloc[:, 3].apply(parse_latlng_from_link))


# Streamlit functions
def display_interventions(interventions_df, m):
    """Display NGO interventions on the map"""
    for index, row in interventions_df.iterrows():
        status = (
            "Done ✅"
            if row[interventions_df.columns[5]]
            != "Intervention prévue dans le futur / Planned future intervention"
            else "Planned ⌛"
        )
        color_mk = (
            "green"
            if row[interventions_df.columns[5]]
            != "Intervention prévue dans le futur / Planned future intervention"
            else "pink"
        )
        intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
        org = row[interventions_df.columns[1]]
        city = row[interventions_df.columns[9]]
        date = row[interventions_df.columns[4]]
        intervention_info = f"<b>Status:</b> {status}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>📅 Date:</b> {date}"
        if row["latlng"] is None:
            continue
        folium.Marker(
            location=row["latlng"],
            tooltip=city,
            popup=folium.Popup(intervention_info, max_width=300),
            icon=folium.Icon(color=color_mk),
        ).add_to(m)


def show_requests(filtered_df, m):
    """Display victim requests on the map"""
    for index, row in filtered_df.iterrows():
        request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
        long_lat = row[
            "هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
        ]
        maps_url = f"https://maps.google.com/?q={long_lat}"
        display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
        icon_name = ICON_MAPPING.get(request_type, "info-sign")
        if row["latlng"] is None:
            continue

        folium.Marker(
            location=row["latlng"],
            tooltip=row["  لأي  جماعة / قيادة / دوار تنتمون ؟"]
            if not pd.isna(row["  لأي  جماعة / قيادة / دوار تنتمون ؟"])
            else None,
            popup=folium.Popup(display_text, max_width=300),
            icon=folium.Icon(
                color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name
            ),
        ).add_to(m)


def display_google_sheet_tables():
    """Display the google sheet tables for requests and interventions"""
    st.subheader("📝 **Table of requests / جدول الطلبات**")
    st.markdown(
        f"""<iframe src="{REQUESTS_URL}" width="100%" height="600px"></iframe>""",
        unsafe_allow_html=True,
    )

    st.subheader("📝 **Table of interventions / جدول التدخلات**")
    st.markdown(
        f"""<iframe src="{INTERVENTIONS_URL}" width="100%" height="600px"></iframe>""",
        unsafe_allow_html=True,
    )


def id_review_submission():
    """Id review submission form"""
    st.subheader("🔍 Review of requests")
    st.markdown(REVIEW_TEXT)

    id_to_review = st.number_input(
        "Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
    )
    reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
    if st.button("Submit / أرسل"):
        if reason_for_review == "":
            st.error("Please enter a reason / الرجاء إدخال سبب")
        else:
            filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
            with open(filename, "w") as f:
                f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
            api.upload_file(
                path_or_fileobj=filename,
                path_in_repo=filename,
                repo_id="nt3awnou/review_requests",
                repo_type="dataset",
            )
            st.success(
                "Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
            )


# Logo and Title
st.markdown(LOGO, unsafe_allow_html=True)
st.title("Nt3awnou نتعاونو ")
st.markdown(SLOGAN, unsafe_allow_html=True)

# Language tabs
st.sidebar.title("Language / اللغة")
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])

with tab_en:
    st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
with tab_ar:
    st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
with tab_fr:
    st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)


# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
interventions_df = parse_gg_sheet_interventions(INTERVENTIONS_URL)
m = init_map()

# Selection of requests
options = [
    "إغاثة",
    "مساعدة طبية",
    "مأوى",
    "طعام وماء",
    "مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []

with tab_en:
    st.markdown("👉 **Choose request type**")
with tab_ar:
    st.markdown("👉 **اختر نوع الطلب**")
with tab_fr:
    st.markdown("👉 **Choisissez le type de demande**")

col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
cols = [col1, col2, col3, col4, col5]

for i, option in enumerate(options):
    checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True)
    if checked:
        selected_options.append(option)

df["id"] = df.index
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].isin(selected_options)]
selected_headers = [HEADERS_MAPPING[request] for request in selected_options]

# Selection of interventions
show_interventions = st.checkbox(
    "Display Interventions | عرض عمليات المساعدة | Afficher les interventions",
    value=True,
)

if show_interventions:
    display_interventions(interventions_df, m)

# Show requests
show_requests(filtered_df, m)

st_data = st_folium(m, use_container_width=True)

# Google Sheet Tables
display_google_sheet_tables()

# Submit an id for review
id_review_submission()


# Credits
st.markdown(
    CREDITS_TEXT,
    unsafe_allow_html=True,
)
if auto_refresh:
    time.sleep(number)
    st.experimental_rerun()