Spaces:
Sleeping
Sleeping
import gradio as gr | |
import face_recognition | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import pickle | |
import firebase_admin | |
from firebase_admin import credentials | |
from firebase_admin import db | |
from firebase_admin import storage | |
# Initialize Firebase | |
cred = credentials.Certificate("serviceAccountKey.json") # Update with your credentials path | |
firebase_app = firebase_admin.initialize_app(cred, { | |
'databaseURL': 'https://faceantendancerealtime-default-rtdb.firebaseio.com/', | |
'storageBucket': 'faceantendancerealtime.appspot.com' | |
}) | |
bucket = storage.bucket() | |
# Function to download face encodings from Firebase Storage | |
def download_encodings(): | |
blob = bucket.blob('EncodeFile.p') | |
blob.download_to_filename('EncodeFile.p') | |
with open('EncodeFile.p', 'rb') as file: | |
return pickle.load(file) | |
encodeListKnownWithIds = download_encodings() | |
encodeListKnown, studentsIds = encodeListKnownWithIds | |
def recognize_face(input_image): | |
# Convert PIL Image to numpy array | |
img = np.array(input_image) | |
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
# Detect faces and encode | |
face_locations = face_recognition.face_locations(img) | |
face_encodings = face_recognition.face_encodings(img, face_locations) | |
# Initialize the database reference | |
ref = db.reference('Students') | |
# Recognize faces and fetch data from the database | |
results = [] | |
for face_encoding in face_encodings: | |
matches = face_recognition.compare_faces(encodeListKnown, face_encoding) | |
name = "Unknown" | |
student_info = {} | |
face_distances = face_recognition.face_distance(encodeListKnown, face_encoding) | |
best_match_index = np.argmin(face_distances) | |
if matches[best_match_index]: | |
student_id = studentsIds[best_match_index] | |
student_info = ref.child(student_id).get() | |
if student_info: | |
name = student_info['name'] | |
results.append(student_info) | |
else: | |
results.append({'name': 'Unknown'}) | |
# Draw rectangles around the faces | |
for (top, right, bottom, left), name in zip(face_locations, [student_info.get('name', 'Unknown') for student_info in results]): | |
cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2) | |
cv2.putText(img, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1) | |
# Convert back to PIL Image | |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
return pil_img, results | |
# Define a function to handle webcam images | |
def process_webcam_image(image): | |
# Convert the base64 image to a format that can be processed | |
# Process the image through the face recognition function | |
return recognize_face(image) | |
# Gradio interface | |
iface = gr.Interface( | |
fn=recognize_face, | |
inputs=gr.Image(tool="editor", source="webcam"), | |
outputs=[ | |
gr.Image(), | |
gr.JSON(label="Student Information") | |
], | |
title="Real-time Face Recognition Attendance System", | |
description="Activate your webcam and take a photo to check attendance." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |