Spaces:
Sleeping
Sleeping
NTAMBARA Etienne
commited on
Commit
·
74b2d91
1
Parent(s):
036e11b
Add initial project files
Browse files- .gitignore +45 -0
- app.py +81 -0
- requirements.txt.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Firebase credentials
|
2 |
+
serviceAccountKey.json
|
3 |
+
|
4 |
+
# Encoded face data
|
5 |
+
EncodeFile.p
|
6 |
+
|
7 |
+
# Temporary files
|
8 |
+
*.pyc
|
9 |
+
__pycache__/
|
10 |
+
.tmp/
|
11 |
+
|
12 |
+
# Dataset directories (if they contain sensitive or large data)
|
13 |
+
Resources/
|
14 |
+
Images/
|
15 |
+
|
16 |
+
# Operating system files
|
17 |
+
.DS_Store
|
18 |
+
Thumbs.db
|
19 |
+
|
20 |
+
# Editor/IDE files
|
21 |
+
.vscode/
|
22 |
+
.idea/
|
23 |
+
|
24 |
+
# Python virtual environment
|
25 |
+
venv/
|
26 |
+
env/
|
27 |
+
|
28 |
+
# Jupyter notebook checkpoints
|
29 |
+
.ipynb_checkpoints/
|
30 |
+
|
31 |
+
# Gradio cached examples
|
32 |
+
gradio_cached_examples/
|
33 |
+
|
34 |
+
# Files and directories generated during execution (replace with your specific paths if they differ)
|
35 |
+
output/
|
36 |
+
*.log
|
37 |
+
captures/
|
38 |
+
|
39 |
+
# If using SQLite or other local DBs
|
40 |
+
*.db
|
41 |
+
*.sqlite
|
42 |
+
*.sqlite3
|
43 |
+
|
44 |
+
# Any additional directories you have that contain generated images or mode images
|
45 |
+
Modes/
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import face_recognition
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import firebase_admin
|
9 |
+
from firebase_admin import credentials
|
10 |
+
from firebase_admin import db
|
11 |
+
from firebase_admin import storage
|
12 |
+
from datetime import datetime
|
13 |
+
|
14 |
+
# Initialize Firebase
|
15 |
+
cred = credentials.Certificate("path/to/serviceAccountKey.json") # Update the path to your Firebase credentials
|
16 |
+
firebase_admin.initialize_app(cred, {
|
17 |
+
'databaseURL': 'https://faceantendancerealtime-default-rtdb.firebaseio.com/',
|
18 |
+
'storageBucket': 'faceantendancerealtime.appspot.com'
|
19 |
+
})
|
20 |
+
bucket = storage.bucket()
|
21 |
+
|
22 |
+
# Load the known face encodings and their IDs from Firebase
|
23 |
+
def load_known_encodings():
|
24 |
+
# Code to download the 'EncodeFile.p' from Firebase Storage
|
25 |
+
# Assume 'EncodeFile.p' is already uploaded to Firebase Storage
|
26 |
+
blob = bucket.blob('EncodeFile.p')
|
27 |
+
blob.download_to_filename('/tmp/EncodeFile.p')
|
28 |
+
with open('/tmp/EncodeFile.p', 'rb') as file:
|
29 |
+
encodeListKnownWithIds = pickle.load(file)
|
30 |
+
return encodeListKnownWithIds
|
31 |
+
|
32 |
+
encodeListKnownWithIds = load_known_encodings()
|
33 |
+
encodeListKnown, studentsIds = encodeListKnownWithIds
|
34 |
+
|
35 |
+
def recognize_face(input_image):
|
36 |
+
# Convert the PIL Image to a numpy array
|
37 |
+
img = np.array(input_image)
|
38 |
+
|
39 |
+
# Convert the image to RGB
|
40 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
41 |
+
|
42 |
+
# Resize image for faster processing
|
43 |
+
img_small = cv2.resize(img, (0, 0), None, 0.25, 0.25)
|
44 |
+
|
45 |
+
# Find faces in the image
|
46 |
+
face_locations = face_recognition.face_locations(img_small)
|
47 |
+
face_encodings = face_recognition.face_encodings(img_small, face_locations)
|
48 |
+
|
49 |
+
# Convert the coordinates to full scale since the image was scaled to 1/4 size
|
50 |
+
face_locations = [(top*4, right*4, bottom*4, left*4) for top, right, bottom, left in face_locations]
|
51 |
+
|
52 |
+
# Recognize faces
|
53 |
+
for face_encoding, (top, right, bottom, left) in zip(face_encodings, face_locations):
|
54 |
+
matches = face_recognition.compare_faces(encodeListKnown, face_encoding)
|
55 |
+
name = "Unknown"
|
56 |
+
|
57 |
+
# Use the known face with the smallest distance to the new face
|
58 |
+
face_distances = face_recognition.face_distance(encodeListKnown, face_encoding)
|
59 |
+
best_match_index = np.argmin(face_distances)
|
60 |
+
if matches[best_match_index]:
|
61 |
+
name = studentsIds[best_match_index]
|
62 |
+
|
63 |
+
# Draw rectangles and names on the original image
|
64 |
+
cv2.rectangle(img, (left, top), (right, bottom), (0, 0, 255), 2)
|
65 |
+
cv2.putText(img, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
|
66 |
+
|
67 |
+
# Convert the image back to PIL format
|
68 |
+
return Image.fromarray(img)
|
69 |
+
|
70 |
+
# Define the Gradio interface
|
71 |
+
iface = gr.Interface(
|
72 |
+
fn=recognize_face,
|
73 |
+
inputs=gr.inputs.Image(type="pil"),
|
74 |
+
outputs=gr.outputs.Image(type="pil"),
|
75 |
+
title="Face Recognition Attendance System",
|
76 |
+
description="Upload an image to identify registered students."
|
77 |
+
)
|
78 |
+
|
79 |
+
# Run the Gradio app
|
80 |
+
if __name__ == "__main__":
|
81 |
+
iface.launch()
|
requirements.txt.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
face_recognition
|
3 |
+
opencv-python-headless
|
4 |
+
numpy
|
5 |
+
Pillow
|
6 |
+
firebase-admin
|