File size: 2,548 Bytes
d0fe3e2 0577c3e d0fe3e2 52bf674 d0fe3e2 0577c3e d0fe3e2 0577c3e d0fe3e2 0577c3e d0fe3e2 0577c3e d0fe3e2 0577c3e d0fe3e2 0577c3e d0fe3e2 0577c3e d0fe3e2 0577c3e 210f9e3 8f71a16 d0fe3e2 0577c3e ec43e35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import gradio as gr
import pickle
import json
import numpy as np
# Load model and columns
with open("kigali_model.pickle", "rb") as f:
model = pickle.load(f)
with open("columns.json", "r") as f:
data_columns = json.load(f)["data_columns"]
# Define the location and property type mappings
location_mapping = {
'gacuriro': 1,
'kacyiru': 2,
'kanombe': 3,
'kibagabaga': 4,
'kicukiro': 5,
'kimironko': 6,
'nyamirambo': 7,
'nyarutarama': 8
}
property_type_mapping = {
'apartment': 1,
'bungalow': 2,
'house': 3,
'villa': 4
}
def transform_data(size_sqm, number_of_bedrooms, number_of_bathrooms, number_of_floors, parking_space, location, property_type):
# Prepare the input array
x = np.zeros(len(data_columns))
x[0] = size_sqm
x[1] = number_of_bedrooms
x[2] = number_of_bathrooms
x[3] = number_of_floors
x[4] = parking_space
# Apply location mapping
if location in location_mapping:
loc_index = data_columns.index(f"Location_{location}")
x[loc_index] = 1
# Apply property type mapping
if property_type in property_type_mapping:
prop_index = data_columns.index(f"Property_Type_{property_type}")
x[prop_index] = 1
return np.array([x])
def predict(size_sqm, number_of_bedrooms, number_of_bathrooms, number_of_floors, parking_space, location, property_type):
# Transform input data
input_data_transformed = transform_data(size_sqm, number_of_bedrooms, number_of_bathrooms, number_of_floors, parking_space, location, property_type)
# Predict using the model
prediction = model.predict(input_data_transformed)
return round(prediction[0], 2) # round prediction for better readability
# Define Gradio interface components
inputs = [
gr.Number(label="Size (sqm)", value=0),
gr.Number(label="Number of Bedrooms", value=0),
gr.Number(label="Number of Bathrooms", value=0),
gr.Number(label="Number of Floors", value=0),
gr.Number(label="Parking Space", value=0),
gr.Dropdown(choices=list(location_mapping.keys()), label="Location"),
gr.Dropdown(choices=list(property_type_mapping.keys()), label="Property Type")
]
outputs = gr.Textbox(label="Prediction (FRW)")
# Footer content
footer = "Etienne NTAMBARA @AI_Engineer"
# Launch the interface
gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="Property Price Prediction",
description="Enter property details to get the price prediction.",
article=footer
).launch(debug=True)
|