Upload 2 files
Browse files- .gitattributes +1 -0
- app.py +67 -0
- model_9.keras +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model_9.keras filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import PIL
|
5 |
+
from PIL import Image
|
6 |
+
from mtcnn import MTCNN
|
7 |
+
import numpy as np
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
from keras.preprocessing.image import img_to_array
|
10 |
+
|
11 |
+
emotions = ['neutral','happiness','surprise','sadness','anger','disgust','fear','contempt','unknown']
|
12 |
+
classifier = load_model("model_9.keras")
|
13 |
+
face_detector_mtcnn = MTCNN()
|
14 |
+
|
15 |
+
|
16 |
+
def predict_emotion(image):
|
17 |
+
|
18 |
+
faces = face_detector_mtcnn.detect_faces(image)
|
19 |
+
|
20 |
+
for face in faces:
|
21 |
+
x,y,w,h = face['box']
|
22 |
+
|
23 |
+
roi = image[y:y+h,x:x+w]
|
24 |
+
|
25 |
+
# Converting the region of interest to grayscale, and resize
|
26 |
+
roi_gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
|
27 |
+
roi_gray = cv2.resize(roi_gray,(48,48),interpolation=cv2.INTER_AREA)
|
28 |
+
|
29 |
+
img = roi_gray.astype('float')/255.0
|
30 |
+
img = img_to_array(img)
|
31 |
+
img = np.expand_dims(img,axis=0)
|
32 |
+
|
33 |
+
prediction = classifier.predict(img)[0]
|
34 |
+
#top_indices = np.argsort(prediction)[-2:]
|
35 |
+
#top_emotion = top_indices[1]
|
36 |
+
#second_emotion = top_indices[0]
|
37 |
+
#label = emotions[top_emotion]
|
38 |
+
confidences = {emotions[i]: float(prediction[i]) for i in range(len(emotions))}
|
39 |
+
|
40 |
+
return confidences
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
demo = gr.Interface(
|
45 |
+
fn = predict_emotion,
|
46 |
+
inputs = gr.Image(type="numpy"),
|
47 |
+
outputs = gr.Label(num_top_classes=9),
|
48 |
+
#flagging_options=["blurry", "incorrect", "other"],
|
49 |
+
examples = [
|
50 |
+
os.path.join(os.path.dirname(__file__), "images/Image_1.jpg"),
|
51 |
+
os.path.join(os.path.dirname(__file__), "images/Image_2.jpg"),
|
52 |
+
os.path.join(os.path.dirname(__file__), "images/Image_3.jpg"),
|
53 |
+
os.path.join(os.path.dirname(__file__), "images/Image_4.jpg"),
|
54 |
+
os.path.join(os.path.dirname(__file__), "images/Image_5.jpg"),
|
55 |
+
os.path.join(os.path.dirname(__file__), "images/Image_6.jpg"),
|
56 |
+
os.path.join(os.path.dirname(__file__), "images/Image_7.jpg"),
|
57 |
+
os.path.join(os.path.dirname(__file__), "images/Image_8.jpg"),
|
58 |
+
os.path.join(os.path.dirname(__file__), "images/Image_9.jpg"),
|
59 |
+
#os.path.join(os.path.dirname(__file__), "images/Image_10.jpg"),
|
60 |
+
],
|
61 |
+
title = "Whatchu feeling?"
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
demo.launch()
|
model_9.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:805a2ce0814a8910a68a06bf54b0bb1579595307972b8f211c5dadf35c59cdad
|
3 |
+
size 16531714
|