File size: 35,648 Bytes
e7fcbb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
import os
import logging
import pickle
import re
import urllib
from itertools import chain
from typing import List, Dict
from multiprocessing import Pool
import numpy as np
from tqdm import tqdm
import torch
from torch.nn import functional
import transformers
from .exceptions import ExceedMaxLengthError, HighlightNotFoundError, AnswerNotFoundError
from .spacy_module import SpacyPipeline, VALID_METHODS
__all__ = ('TransformersQG', 'ADDITIONAL_SP_TOKENS', 'TASK_PREFIX', 'clean', 'internet_connection')
os.environ["TOKENIZERS_PARALLELISM"] = "false" # to turn off warning message
TASK_PREFIX = {
"ae": "extract answers",
"qg": "generate question",
"qag": "generate question and answer",
"qa": "answer question"
}
CE_IGNORE_INDEX = -100
ADDITIONAL_SP_TOKENS = {'hl': '<hl>'}
NUM_WORKERS = int(os.getenv('NUM_WORKERS', '0'))
PARALLEL_PROCESSING = bool(int(os.getenv('PARALLEL_PROCESSING', '0')))
DEFAULT_MODELS = {
'vi': 'VietAI/vit5-base'
}
def pickle_save(obj, path: str):
with open(path, "wb") as fp:
pickle.dump(obj, fp)
def pickle_load(path: str):
with open(path, "rb") as fp: # Unpickling
return pickle.load(fp)
def clean(string):
string = re.sub(r'\A\s*', '', string)
string = re.sub(r'\s*\Z', '', string)
if len(string) > 0:
return string
return None
def internet_connection(host='http://google.com'):
try:
urllib.request.urlopen(host)
return True
except:
return False
def load_language_model(model_name,
cache_dir: str = None,
use_auth_token: bool = False,
torch_dtype=None,
device_map: str = None,
low_cpu_mem_usage: bool = False):
""" load language model from huggingface model hub """
# tokenizer
local_files_only = not internet_connection()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name, cache_dir=cache_dir, local_files_only=local_files_only, use_auth_token=use_auth_token)
config = transformers.AutoConfig.from_pretrained(
model_name, local_files_only=local_files_only, cache_dir=cache_dir, use_auth_token=use_auth_token)
# model
if config.model_type == 't5': # T5 model requires T5ForConditionalGeneration class
model_class = transformers.T5ForConditionalGeneration.from_pretrained
elif config.model_type == 'mt5':
model_class = transformers.MT5ForConditionalGeneration.from_pretrained
elif config.model_type == 'bart':
model_class = transformers.BartForConditionalGeneration.from_pretrained
elif config.model_type == 'mbart':
model_class = transformers.MBartForConditionalGeneration.from_pretrained
elif config.model_type == 'switch_transformers':
model_class = transformers.SwitchTransformersForConditionalGeneration.from_pretrained
else:
raise ValueError(f'unsupported model type: {config.model_type}')
param = {'config': config, "local_files_only": local_files_only, "use_auth_token": use_auth_token,
"low_cpu_mem_usage": low_cpu_mem_usage, "cache_dir": cache_dir}
if torch_dtype is not None:
param['torch_dtype'] = torch_dtype
if device_map is not None:
param['device_map'] = device_map
model = model_class(model_name, **param)
# add new special tokens to the tokenizer and the model if they don't have it
tokenizer.add_special_tokens({'additional_special_tokens': list(ADDITIONAL_SP_TOKENS.values())})
model.resize_token_embeddings(len(tokenizer))
return tokenizer, model, config
def label_smoothed_loss(logits, labels, epsilon):
""" https://github.com/huggingface/transformers/blob/55bb4c06f7be141c6d895dbe1f11018dc8580b2d/src/transformers/trainer_pt_utils.py#L430 """
log_probs = - functional.log_softmax(logits, dim=-1)
if labels.dim() == log_probs.dim() - 1:
labels = labels.unsqueeze(-1)
padding_mask = labels.eq(CE_IGNORE_INDEX)
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
# will ignore them in any case.
labels.clamp_min_(0)
nll_loss = log_probs.gather(dim=-1, index=labels)
nll_loss.masked_fill_(padding_mask, 0.0)
# works for fp16 input tensor too, by internally upcasting it to fp32
smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32)
smoothed_loss.masked_fill_(padding_mask, 0.0)
# Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
nll_loss = nll_loss.sum() / num_active_elements
smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1])
return (1 - epsilon) * nll_loss + epsilon * smoothed_loss
class Dataset(torch.utils.data.Dataset):
""" torch.utils.data.Dataset wrapper converting into tensor """
float_tensors = ['attention_mask']
def __init__(self, data: List):
self.data = data
def __len__(self):
return len(self.data)
def to_tensor(self, name, data):
if name in self.float_tensors:
return torch.tensor(data, dtype=torch.float32)
return torch.tensor(data, dtype=torch.long)
def __getitem__(self, idx):
return {k: self.to_tensor(k, v) for k, v in self.data[idx].items()}
class EncodePlus:
""" Wrapper of encode_plus for multiprocessing. """
def __init__(self,
tokenizer,
max_length: int = 512,
max_length_output: int = 34,
drop_overflow_error_text: bool = False,
skip_overflow_error: bool = False,
drop_highlight_error_text: bool = False,
prefix_type: str = None,
padding: bool = True):
""" Wrapper of encode_plus for multiprocessing.
@param tokenizer: transforms.Tokenizer
@param max_length: Max text length of input.
@param max_length_output: Max text length of output.
@param drop_overflow_error_text: If true, return None when the input exceeds the max length.
@param skip_overflow_error: If true, raise an error when the input exceeds the max length.
@param drop_highlight_error_text: If true, raise an error when a highlight span is not found in the paragraph.
@param prefix_type: Either of `qg` or `answer_extraction`, which is to add at the beginning of the text.
@param padding: Pad the sequence to the max length.
"""
self.prefix = TASK_PREFIX[prefix_type] if prefix_type is not None else None
self.tokenizer = tokenizer
self.max_length = max_length
self.max_length_output = max_length_output
# NOTE: for model training, we should drop the exceeded input but not for the evaluator
self.drop_overflow_error_text = drop_overflow_error_text
self.skip_overflow_error = skip_overflow_error
self.drop_highlight_error_text = drop_highlight_error_text
# truncation should be true for the batch process, but not necessary to process single input
self.param_in = {'truncation': True, 'max_length': self.max_length}
self.param_out = {'truncation': True, 'max_length': self.max_length_output}
if padding:
self.param_in['padding'] = 'max_length'
self.param_out['padding'] = 'max_length'
def __call__(self, inputs):
return self.encode_plus(*inputs)
def encode_plus(self, input_sequence: str, output_sequence: str = None, input_highlight: str = None):
""" encode_plus
@param input_sequence: Input sequence.
@param output_sequence: Output sequence.
@param input_highlight: Sub-sequence of `input_sequence` to be surrounded by <hl>.
@return: The output of `encode_plus`.
"""
# add highlight to the input
if input_highlight is not None:
position = input_sequence.find(input_highlight)
if position == -1:
if self.drop_highlight_error_text:
return None
raise HighlightNotFoundError(input_highlight, input_sequence)
input_sequence = '{0}{1} {2} {1}{3}'.format(
input_sequence[:position], ADDITIONAL_SP_TOKENS['hl'], input_highlight,
input_sequence[position+len(input_highlight):])
if self.prefix is not None:
input_sequence = f'{self.prefix}: {input_sequence}'
# handling overflow text
# drop_overflow_error_text ==> remove the overflow sentence from input
# skip_overflow_error ==> keep the overflow sentence
# none of them ==> raise error
if self.drop_overflow_error_text or not self.skip_overflow_error:
if len(self.tokenizer.encode(input_sequence)) > self.max_length:
if not self.drop_overflow_error_text: # raise error for overflow text
raise ExceedMaxLengthError(self.max_length)
return None # remove overflow text
if output_sequence is not None:
if len(self.tokenizer.encode(output_sequence)) > self.max_length_output:
if not self.drop_overflow_error_text: # raise error for overflow text
raise ExceedMaxLengthError(self.max_length)
return None # remove overflow text
if type(self.tokenizer) is transformers.models.mbart.tokenization_mbart_fast.MBartTokenizerFast:
encode = self.tokenizer(input_sequence, **self.param_in)
else:
encode = self.tokenizer(text_target=input_sequence, **self.param_in)
if output_sequence is not None:
encode['labels'] = self.tokenizer.encode(output_sequence, **self.param_out)
return encode
class TransformersQG:
""" Transformers Language Model for Question Generation. """
def __init__(self,
model: str = None,
max_length: int = 512,
max_length_output: int = 256,
model_ae: str = None,
max_length_ae: int = 512,
max_length_output_ae: int = 64,
cache_dir: str = None,
add_prefix: bool = None,
language: str = 'vi',
label_smoothing: float = None,
skip_overflow_error: bool = False,
drop_overflow_error_text: bool = False,
drop_highlight_error_text: bool = False,
drop_answer_error_text: bool = False,
use_auth_token: bool = False,
torch_dtype=None,
device_map: str = None,
low_cpu_mem_usage: bool = False,
is_qg: bool = None,
is_qag: bool = None,
is_qa: bool = None,
is_ae: bool = None):
""" Transformers Language Model for Question Generation.
@param model: Model alias or path to local model file.
@param max_length: Max text length of input.
@param max_length_output: Max text length of output.
@param cache_dir: Directory to cache transformers model files.
@param add_prefix: Whether model uses task-specific prefix (eg. True for T5 but False for BART models).
@param language: Language alias for SpaCy language-specific pipelines (sentencizer/keyword extraction).
@param label_smoothing: [Fine-tuning parameter] Label smoothing.
@param drop_overflow_error_text: If true, return None when the input exceeds the max length.
@param skip_overflow_error: If true, raise an error when the input exceeds the max length.
@param drop_highlight_error_text: If true, raise an error when a highlight span is not found in the paragraph.
@param use_auth_token: [optional] Huggingface transformers argument of `use_auth_token`
"""
# take default model given the language
if model is None:
assert language in DEFAULT_MODELS.keys(),\
f"Model with language '{language}' is not available. Please choose language from " \
f"'{DEFAULT_MODELS.keys()}' or specify 'model'."
model = DEFAULT_MODELS[language]
# classify model type
self.is_qg = 'qg' in model.split('-') if is_qg is None else is_qg
self.is_ae = 'ae' in model.split('-') if is_ae is None else is_ae
self.is_qa = 'qa' in model.split('-') if is_qa is None else is_qa
self.is_qag = 'qag' in model.split('-') if is_qag is None else is_qag
# configs
self.model_name = model
self.max_length = max_length
self.max_length_output = max_length_output
self.label_smoothing = label_smoothing
self.drop_overflow_error_text = drop_overflow_error_text
self.skip_overflow_error = skip_overflow_error
self.drop_highlight_error_text = drop_highlight_error_text
self.drop_answer_error_text = drop_answer_error_text
self.model_name_ae = model_ae
self.max_length_ae = max_length_ae
self.max_length_output_ae = max_length_output_ae
# load model
self.tokenizer, self.model, config = load_language_model(
self.model_name, cache_dir=cache_dir, use_auth_token=use_auth_token, device_map=device_map,
torch_dtype=torch_dtype, low_cpu_mem_usage=low_cpu_mem_usage)
if 'add_prefix' not in config.to_dict().keys():
# this means the model is not fine-tuned
# assert add_prefix, '`add_prefix` is required for non-fine-tuned models'
self.add_prefix = add_prefix
else:
self.add_prefix = config.add_prefix
# set default behaviour for answer extraction
if self.model_name_ae is None:
self.model_name_ae = self.model_name if self.is_ae else "positionrank"
# load answer extraction model
self.answer_model_type = None
if self.model_name_ae in VALID_METHODS:
logging.info(f'use spaCy answer extraction model: {self.model_name_ae}')
self.tokenizer_ae = self.model_ae = self.add_prefix_ae = None
self.spacy_module = SpacyPipeline(language, self.model_name_ae)
self.answer_model_type = 'spacy'
else:
logging.info(f'use LMQG fine-tuned answer extraction model: {self.model_name_ae}')
if self.model_name == self.model_name_ae:
logging.info("the same model as QG is used as AE")
assert self.is_ae, f"the model ({self.model_name_ae}) is not fine-tuned for AE"
self.tokenizer_ae = self.model_ae = self.add_prefix_ae = None
self.answer_model_type = 'multitask'
else:
logging.info(f"loading 2nd model for AE: {self.model_name_ae}")
self.tokenizer_ae, self.model_ae, config_ae = load_language_model(model_ae, cache_dir=cache_dir, use_auth_token=use_auth_token)
self.add_prefix_ae = config_ae.add_prefix
self.answer_model_type = 'pipeline'
self.spacy_module = SpacyPipeline(language)
# GPU setup
self.device = 'cuda' if torch.cuda.device_count() > 0 else 'cpu'
self.parallel = False
if torch.cuda.device_count() > 1:
self.parallel = True
self.model = torch.nn.DataParallel(self.model)
if self.model_ae is not None:
self.model_ae = torch.nn.DataParallel(self.model_ae)
self.model.to(self.device)
if self.model_ae is not None:
self.model_ae.to(self.device)
logging.info(f'Model `{self.model_name}`')
logging.info(f'\t * Num of GPU in use: {torch.cuda.device_count()}')
logging.info(f'\t * Prefix: {self.add_prefix}')
logging.info(f'\t * Language: {language} (ignore at the training phase)')
def push_to_hub(self, repo_id):
if self.parallel:
self.model.module.push_to_hub(repo_id)
else:
self.model.push_to_hub(repo_id)
self.tokenizer.push_to_hub(repo_id)
def generate_qa_end2end(self,
list_context: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
splitting_symbol: str = ' [SEP] ',
question_prefix: str = "question: ",
answer_prefix: str = ", answer: "):
""" Generate question from paragraph and answer. Note that `list_answer` is needed unless they are already
highlighted in the `list_context`. eg) "I live in <hl> Tokyo <hl>."
@param list_context: List of input texts.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@return: List of generated sentences.
"""
logging.info(f'running model for `question_answer_pair_generation`')
assert self.is_qag, "`generate_qa_end2end` is available for end2end_qag_model"
prefix_type = 'qag' if self.add_prefix else None
single_input = type(list_context) is str
list_context = [list_context] if single_input else list_context
output = self.generate_prediction(
list_context, prefix_type=prefix_type, cache_path=cache_path, num_beams=num_beams, batch_size=batch_size
)
def format_qa(list_raw_string):
tmp = []
for raw_string in list_raw_string:
if len(raw_string.split(answer_prefix)) != 2 or question_prefix not in raw_string:
logging.info(f"invalid prediction: {raw_string}")
else:
q, a = raw_string.split(answer_prefix)
a = re.sub(r'\A\s+', '', a)
a = re.sub(r'\s+\Z', '', a)
q = q.replace(question_prefix, "")
q = re.sub(r'\A\s+', '', q)
q = re.sub(r'\s+\Z', '', q)
tmp.append((q, a))
return tmp
output = [format_qa(o.split(splitting_symbol)) for o in output]
return output[0] if single_input else output
def generate_qa(self,
list_context: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
num_questions: int = None,
sentence_level: bool = False):
""" Generate question given context.
@param list_context: Input text.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param num_questions: Max number of questions.
@param sentence_level: Run prediction on each sentence of the context independently to reduce complexity.
@return: List of generated sentences.
"""
if self.is_qag:
return self.generate_qa_end2end(list_context, batch_size, num_beams, cache_path)
single_input = type(list_context) is str
list_context = [list_context] if single_input else list_context
original_input_length = len(list_context)
logging.info('running model for `ae`')
list_answer = self.generate_a(
list_context,
batch_size=batch_size,
num_beams=num_beams,
cache_path=cache_path,
sentence_level=sentence_level,
num_questions=num_questions
)
valid_context_id = [n for n, a in enumerate(list_answer) if a is not None]
list_context = [list_context[n] for n in valid_context_id]
list_answer = [list_answer[n] for n in valid_context_id]
qg_input, qg_hl, list_length = [], [], [0]
for c, a in zip(list_context, list_answer):
qg_hl += a
qg_input += [c] * len(a)
list_length.append(list_length[-1] + len(a))
logging.info('running model for `qg`')
list_question = self.generate_q(
qg_input,
list_answer=qg_hl,
batch_size=batch_size,
cache_path=cache_path,
num_beams=num_beams,
sentence_level=sentence_level
)
assert len(qg_hl) == len(list_question), f"{len(qg_input)} != {len(list_question)}"
# return to nested list
list_question = [list_question[list_length[n - 1]:list_length[n]] for n in range(1, len(list_length))]
list_answer = [qg_hl[list_length[n - 1]:list_length[n]] for n in range(1, len(list_length))]
output_list = [None] * original_input_length
# print(len(valid_context_id), valid_context_id[:10], valid_context_id[-10:0])
# print(original_input_length)
# print(len(list_question), len(list_answer))
for n, _id in enumerate(valid_context_id):
output_list[_id] = [(q, a) for q, a in zip(list_question[n], list_answer[n])]
return output_list[0] if single_input else output_list
def generate_a(self,
context: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
sentence_level: bool = False,
num_questions: int = None):
""" Generate answers from each sentence.
@param context: Input text.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param sentence_level: Run prediction on each sentence of the context independently to reduce complexity.
@param num_questions: Max number of questions.
@return: List of generated answers.
"""
logging.info(f'running model for `answer_extraction`')
if self.answer_model_type == 'spacy':
num_questions = 10 if num_questions is None else num_questions
if type(context) is str:
return self.spacy_module.keyword(context, num_questions)
else:
return [self.spacy_module.keyword(c, num_questions) for c in context]
single_input = type(context) is str
context = [context] if single_input else context
list_sentences = [self.spacy_module.sentence(c) for c in context] # split into sentence
list_inputs = [[c] * len(s) for c, s in zip(context, list_sentences)]
list_length = [0] + np.cumsum([len(s) for s in list_sentences]).tolist()
if sentence_level:
list_inputs = list_sentences
# flatten inputs
flat_sentences = list(chain(*list_sentences))
flat_inputs = list(chain(*list_inputs))
if self.answer_model_type == 'multitask':
answer = self.generate_prediction(
flat_inputs, # list_input,
highlights=flat_sentences, # highlights=list_sentence,
prefix_type='ae' if self.add_prefix else None,
cache_path=cache_path,
num_beams=num_beams,
batch_size=batch_size
)
elif self.answer_model_type == 'pipeline':
answer = self.generate_prediction(
flat_inputs, # list_input,
highlights=flat_sentences, # highlights=list_sentence,
prefix_type='ae' if self.add_prefix_ae else None,
cache_path=cache_path,
num_beams=num_beams,
batch_size=batch_size,
switch_to_model_ae=True
)
else:
raise ValueError(f"unknown answer model type: {self.answer_model_type}")
# return to nested list
answer = [clean(a) for a in answer]
list_answer = [answer[list_length[n - 1]:list_length[n]] for n in range(1, len(list_length))]
list_answer = [[a for a, c in zip(a_sent, c_sent) if a is not None and a in c]
for a_sent, c_sent in zip(list_answer, list_inputs)]
list_answer = [None if len(a) == 0 else a for a in list_answer]
if not self.drop_answer_error_text:
if any(a is None for a in list_answer):
raise AnswerNotFoundError([context[n] for n, a in enumerate(list_answer) if a is None][0])
return list_answer[0] if single_input else list_answer
def generate_q(self,
list_context: str or List,
list_answer: List = None,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
sentence_level: bool = False):
""" Generate question from paragraph and answer. Note that `list_answer` is needed unless they are already
highlighted in the `list_context`. eg) "I live in <hl> Tokyo <hl>."
@param list_context: List of input texts.
@param list_answer: List of answers in the `list_context` that are highlighted by <hl>.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param sentence_level: Run prediction on each sentence of the context independently to reduce complexity.
@return: List of generated sentences.
"""
assert self.is_qg, "model is not fine-tuned for QG"
if list_answer is not None:
assert type(list_context) is type(list_answer), f"{type(list_context)} != {type(list_answer)}"
single_input = False
if type(list_context) is str:
list_context = [list_context]
list_answer = [list_answer] if list_answer is not None else None
single_input = True
output = self.generate_prediction(
list_context,
highlights=list_answer,
prefix_type='qg' if self.add_prefix else None,
cache_path=cache_path,
num_beams=num_beams,
batch_size=batch_size,
sentence_level=sentence_level
)
if single_input:
return output[0]
return output
def answer_q(self,
list_context: str or List,
list_question: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None):
logging.info(f'running model for `question_answering`')
assert self.is_qa, "model is not fine-tuned for QA"
assert type(list_context) is type(list_question), "invalid input"
single_input = type(list_context) is str
list_context = [list_context] if single_input else list_context
list_question = [list_question] if single_input else list_question
assert len(list_context) == len(list_question), f"invalid input: {len(list_context)} != {len(list_question)}"
output = self.generate_prediction(
[f"question: {q}, context: {c}" for q, c in zip(list_question, list_context)],
batch_size=batch_size,
prefix_type='qa' if self.add_prefix else None,
cache_path=cache_path,
num_beams=num_beams
)
return output[0] if single_input else output
def generate_prediction(self,
inputs: List,
highlights: List or None = None,
prefix_type: str = None,
num_beams: int = 4,
batch_size: int = None,
cache_path: str = None,
sentence_level: bool = False,
switch_to_model_ae: bool = False):
""" General method to generate model prediction
@param inputs: List of input sequences.
@param highlights: List of sub-sequences from list_context to be highlighted by <hl>.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param prefix_type: Either of `qg` or `answer_extraction`, which is to add at the beginning of the text.
@return: List of generated sequences.
"""
self.eval()
if switch_to_model_ae:
assert self.model_ae is not None and self.tokenizer_ae is not None
model = self.model_ae
tokenizer = self.tokenizer_ae
max_length_output = self.max_length_output_ae
else:
model = self.model
tokenizer = self.tokenizer
max_length_output = self.max_length_output
if sentence_level:
assert highlights is not None, '`sentence_level` needs `highlights`.'
assert len(highlights) == len(inputs), str([len(highlights), len(inputs)])
list_sentence = []
for context, answer in zip(inputs, highlights):
s = [sentence for sentence in self.spacy_module.sentence(context) if answer in sentence]
list_sentence.append(s[0] if len(s) != 0 else context)
inputs = list_sentence
assert type(inputs) is list, inputs
encode_list = self.text_to_encode(
inputs,
highlights=highlights,
prefix_type=prefix_type,
cache_path=cache_path,
switch_to_model_ae=switch_to_model_ae
)
loader = self.get_data_loader(encode_list, batch_size=batch_size)
outputs = []
for encode in loader:
with torch.no_grad():
if 'labels' in encode:
encode.pop('labels')
encode = {k: v.to(self.device) for k, v in encode.items()}
encode['max_length'] = max_length_output
encode['num_beams'] = num_beams
tensor = model.module.generate(**encode) if self.parallel else model.generate(**encode)
outputs += tokenizer.batch_decode(tensor, skip_special_tokens=True)
return outputs
def encode_to_loss(self, encode: Dict):
""" Transform encoded features to loss value for model finetuning.
@param encode: Encoded feature.
@return: Loss value.
"""
assert 'labels' in encode
output = self.model(**{k: v.to(self.device) for k, v in encode.items()})
if self.label_smoothing is None or self.label_smoothing == 0.0:
return output['loss'].mean() if self.parallel else output['loss']
else:
return label_smoothed_loss(output['logits'], encode['labels'].to(self.device), self.label_smoothing)
def text_to_encode(self,
inputs,
outputs: List = None,
highlights: List = None,
prefix_type: str = None,
cache_path: str = None,
switch_to_model_ae: bool = False):
""" Transform texts into encoded features.
@param inputs: List of input sequences.
@param outputs: List of output sequences.
@param highlights: List of sub-sequences from `inputs` to be highlighted by <hl>.
@param prefix_type: Either of `qg` or `answer_extraction`, which is to add at the beginning of the text.
@param cache_path: Path to pre-compute features.
@return: List of encoded feature.
"""
if cache_path is not None and os.path.exists(cache_path):
logging.info(f'loading preprocessed feature from {cache_path}')
return pickle_load(cache_path)
outputs = [None] * len(inputs) if outputs is None else outputs
highlights = [None] * len(inputs) if highlights is None else highlights
assert len(outputs) == len(inputs) == len(highlights), str([len(outputs), len(inputs), len(highlights)])
data = list(zip(inputs, outputs, highlights))
# process in parallel/single
config = {'tokenizer': self.tokenizer, 'max_length': self.max_length, 'prefix_type': prefix_type,
'max_length_output': self.max_length_output, 'drop_overflow_error_text': self.drop_overflow_error_text,
'skip_overflow_error': self.skip_overflow_error, 'drop_highlight_error_text': self.drop_highlight_error_text,
'padding': False if len(data) == 1 else True}
if switch_to_model_ae:
assert self.model_ae is not None and self.tokenizer_ae is not None
config['tokenizer'] = self.tokenizer_ae
config['max_length'] = self.max_length_ae
config['max_length_output'] = self.max_length_output_ae
logging.info(f'encode all the data : {len(data)}')
if cache_path is not None:
os.makedirs(os.path.dirname(cache_path), exist_ok=True)
if PARALLEL_PROCESSING:
pool = Pool()
out = pool.map(EncodePlus(**config), data)
pool.close()
out = list(filter(None, out)) # remove overflow text
else:
f = EncodePlus(**config)
out = []
files = []
for i in tqdm(data):
e = f(i)
if e is not None: # remove overflow text
out.append(e)
if len(out) > 40000 and cache_path is not None:
pickle_save(out, f'{cache_path}.tmp{len(files)}')
files.append(f'{cache_path}.tmp{len(files)}')
out = []
if len(out) > 0 and cache_path is not None:
pickle_save(out, f'{cache_path}.tmp{len(files)}')
files.append(f'{cache_path}.tmp{len(files)}')
if len(files) > 0:
out = list(chain(*[pickle_load(i) for i in files]))
logging.info(f'after remove the overflow : {len(out)}')
# cache the encoded data
if cache_path is not None:
pickle_save(out, cache_path)
logging.info(f'preprocessed feature is saved at {cache_path}')
return out
def save(self, save_dir):
""" Save model.
@param save_dir: Directory to save model related file.
"""
def model_state(model):
if self.parallel:
return model.module
return model
logging.info('saving model')
model_state(self.model).config.update({'add_prefix': self.add_prefix})
model_state(self.model).save_pretrained(save_dir)
logging.info('saving tokenizer')
self.tokenizer.save_pretrained(save_dir)
@staticmethod
def get_data_loader(encode_list, batch_size: int = None, shuffle: bool = False, drop_last: bool = False):
""" Get torch.utils.data.DataLoader instance.
@param encode_list: List of encoded features.
@param batch_size: Batch size.
@param shuffle: Shuffle data.
@param drop_last: Drop residual batch.
@return: torch.utils.data.DataLoader
"""
batch_size = len(encode_list) if batch_size is None else batch_size
params = dict(batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=NUM_WORKERS)
return torch.utils.data.DataLoader(Dataset(encode_list), **params)
def train(self):
self.model.train()
def eval(self):
self.model.eval() |