from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList import torch import json import json import re import numpy as np def create_prompt(text, template, examples): template = json.dumps(json.loads(template),indent = 4) prompt = "<|input|>\n### Template:\n"+template+"\n" if examples[0]: example1 = json.dumps(json.loads(examples[0]),indent = 4) prompt+= "### Example:\n"+example1+"\n" if examples[1]: example2 = json.dumps(json.loads(examples[1]),indent = 4) prompt+= "### Example:\n"+example1+"\n" if examples[2]: example3 = json.dumps(json.loads(examples[1]),indent = 4) prompt+= "### Example:\n"+example3+"\n" prompt += "### Text:\n"+text+'''\n<|output|>''' return prompt def generate_answer_short(prompt,model, tokenizer): model_input = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=3000).to("cuda") with torch.no_grad(): gen = tokenizer.decode(model.generate(**model_input, max_new_tokens=1500)[0], skip_special_tokens=True) print(gen.split("<|output|>")[1]) return gen.split("<|output|>")[1].split("<|end-output|>")[0]