File size: 11,279 Bytes
92740f3
 
 
 
 
 
ff11d1b
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
64fc4c7
 
 
 
92740f3
052dec1
ff11d1b
92740f3
64fc4c7
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff11d1b
92740f3
 
 
 
 
 
 
 
 
 
64fc4c7
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
e36d5fd
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0195d32
 
92740f3
 
 
ff11d1b
92740f3
 
 
 
 
 
 
 
 
 
 
0195d32
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
 
664359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ac3413
92740f3
 
 
 
 
 
 
a962d22
92740f3
a962d22
 
 
 
 
 
92740f3
 
 
 
 
 
a962d22
92740f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) 2024 NVIDIA CORPORATION. 
#   Licensed under the MIT license.

import os
import yaml

# import spaces
import gradio as gr

import librosa
from pydub import AudioSegment
import soundfile as sf

import numpy as np
import torch
import laion_clap

from inference_utils import prepare_tokenizer, prepare_model, inference
from data import AudioTextDataProcessor

if torch.cuda.is_available():
    device = 'cuda:0'
else:
    device = 'cpu'


# @spaces.GPU
def load_laionclap():
    model = laion_clap.CLAP_Module(enable_fusion=True, amodel='HTSAT-tiny').to(device)
    model.load_ckpt(ckpt='630k-audioset-fusion-best.pt')
    model.eval()
    return model


def int16_to_float32(x):
    return (x / 32767.0).astype(np.float32)


def float32_to_int16(x):
    x = np.clip(x, a_min=-1., a_max=1.)
    return (x * 32767.).astype(np.int16)


def load_audio(file_path, target_sr=44100, duration=33.25, start=0.0):
    if file_path.endswith('.mp3'):
        audio = AudioSegment.from_file(file_path)
        if len(audio) > (start + duration) * 1000:
            audio = audio[start * 1000:(start + duration) * 1000]

        if audio.frame_rate != target_sr:
            audio = audio.set_frame_rate(target_sr)

        if audio.channels > 1:
            audio = audio.set_channels(1)
        
        data = np.array(audio.get_array_of_samples())
        if audio.sample_width == 2:
            data = data.astype(np.float32) / np.iinfo(np.int16).max
        elif audio.sample_width == 4:
            data = data.astype(np.float32) / np.iinfo(np.int32).max
        else:
            raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))

    else:
        with sf.SoundFile(file_path) as audio:
            original_sr = audio.samplerate
            channels = audio.channels

            max_frames = int((start + duration) * original_sr)

            audio.seek(int(start * original_sr))
            frames_to_read = min(max_frames, len(audio))
            data = audio.read(frames_to_read)

            if data.max() > 1 or data.min() < -1:
                data = data / max(abs(data.max()), abs(data.min()))
        
        if original_sr != target_sr:
            if channels == 1:
                data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
            else:
                data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
        else:
            if channels != 1:
                data = data.T[0]
    
    if data.min() >= 0:
        data = 2 * data / abs(data.max()) - 1.0
    else:
        data = data / max(abs(data.max()), abs(data.min()))
    return data


# @spaces.GPU
@torch.no_grad()
def compute_laionclap_text_audio_sim(audio_file, laionclap_model, outputs):
    try:
        data = load_audio(audio_file, target_sr=48000)
    
    except Exception as e:
        print(audio_file, 'unsuccessful due to', e)
        return [0.0] * len(outputs)
    
    audio_data = data.reshape(1, -1)
    audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float().to(device)
    audio_embed = laionclap_model.get_audio_embedding_from_data(x=audio_data_tensor, use_tensor=True)

    text_embed = laionclap_model.get_text_embedding(outputs, use_tensor=True)

    cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
    cos_similarity = cos(audio_embed.repeat(text_embed.shape[0], 1), text_embed)
    return cos_similarity.squeeze().cpu().numpy()


inference_kwargs = {
    "do_sample": True,
    "top_k": 50,
    "top_p": 0.95,
    "num_return_sequences": 20
}

config = yaml.load(open('chat.yaml'), Loader=yaml.FullLoader)
clap_config = config['clap_config']
model_config = config['model_config']

text_tokenizer = prepare_tokenizer(model_config)
DataProcessor = AudioTextDataProcessor(
    data_root='./',
    clap_config=clap_config,
    tokenizer=text_tokenizer,
    max_tokens=512,
)

laionclap_model = load_laionclap()

model = prepare_model(
    model_config=model_config, 
    clap_config=clap_config, 
    checkpoint_path='chat.pt',
    device=device
)


# @spaces.GPU
def inference_item(name, prompt):
    item = {
        'name': str(name), 
        'prefix': 'The task is dialog.', 
        'prompt': str(prompt)
    }
    processed_item = DataProcessor.process(item)

    outputs = inference(
        model, text_tokenizer, item, processed_item,
        inference_kwargs,
        device=device
    )

    laionclap_scores = compute_laionclap_text_audio_sim(
        item["name"],
        laionclap_model,
        outputs
    )

    outputs_joint = [(output, score) for (output, score) in zip(outputs, laionclap_scores)]
    outputs_joint.sort(key=lambda x: -x[1])

    return outputs_joint[0][0]


css = """
        a {
            color: inherit;
            text-decoration: underline;
        }
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: #000000;
            background: #000000;
        }
        input[type='range'] {
            accent-color: #000000;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
            margin-top: 10px;
            margin-left: auto;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
        }
        #share-btn * {
            all: unset;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #generated_id{
            min-height: 700px
        }
        #setting_id{
          margin-bottom: 12px;
          text-align: center;
          font-weight: 900;
        }
"""

ui = gr.Blocks(css=css, title="Audio Flamingo - Demo")

with ui:

    gr.HTML(
        """
        <div style="text-align: center; max-width: 900px; margin: 0 auto;">
            <div
            style="
                display: inline-flex;
                align-items: center;
                gap: 0.8rem;
                font-size: 1.5rem;
            "
            >
            <h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;">
                Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities
            </h1>
            </div>
            <p style="margin-bottom: 10px; font-size: 125%">
            <a href="https://arxiv.org/abs/2402.01831">[Paper]</a>  <a href="https://github.com/NVIDIA/audio-flamingo">[Code]</a>  <a href="https://audioflamingo.github.io/">[Demo Website]</a> <a href="https://www.youtube.com/watch?v=ucttuS28RVE">[Demo Video]</a>
            </p>
        </div>
        """
    )
    gr.HTML(
        """
        <div>
        <h3>Overview</h3>
        Audio Flamingo is an audio language model that can understand sounds beyond speech. 
        It can also answer questions about the sound in natural language. <br>
        Examples of questions include: <br>
        - Can you briefly describe what you hear in this audio? <br>
        - What is the emotion conveyed in this music? <br>
        - Where is this audio usually heard? <br>
        - What place is this music usually played at? <br>
        </div>
        """
    )

    name = gr.Textbox(
        label="Audio file path (choose one from: audio/wav{1--6}.wav)",
        value="audio/wav1.wav"
    )
    prompt = gr.Textbox(
        label="Instruction",
        value='Can you briefly describe what you hear in this audio?'
    )

    with gr.Row():
        play_audio_button = gr.Button("Play Audio")
    audio_output = gr.Audio(label="Playback")
    play_audio_button.click(fn=lambda x: x, inputs=name, outputs=audio_output)

    inference_button = gr.Button("Inference")

    output_text = gr.Textbox(label="Audio Flamingo output")

    inference_button.click(
        fn=inference_item, 
        inputs=[name, prompt],
        outputs=output_text
    )

ui.queue()
ui.launch()