Spaces:
Build error
Build error
File size: 11,279 Bytes
92740f3 ff11d1b 92740f3 64fc4c7 92740f3 052dec1 ff11d1b 92740f3 64fc4c7 92740f3 ff11d1b 92740f3 64fc4c7 92740f3 e36d5fd 92740f3 0195d32 92740f3 ff11d1b 92740f3 0195d32 92740f3 664359d 92740f3 2ac3413 92740f3 a962d22 92740f3 a962d22 92740f3 a962d22 92740f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import os
import yaml
# import spaces
import gradio as gr
import librosa
from pydub import AudioSegment
import soundfile as sf
import numpy as np
import torch
import laion_clap
from inference_utils import prepare_tokenizer, prepare_model, inference
from data import AudioTextDataProcessor
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
# @spaces.GPU
def load_laionclap():
model = laion_clap.CLAP_Module(enable_fusion=True, amodel='HTSAT-tiny').to(device)
model.load_ckpt(ckpt='630k-audioset-fusion-best.pt')
model.eval()
return model
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
def load_audio(file_path, target_sr=44100, duration=33.25, start=0.0):
if file_path.endswith('.mp3'):
audio = AudioSegment.from_file(file_path)
if len(audio) > (start + duration) * 1000:
audio = audio[start * 1000:(start + duration) * 1000]
if audio.frame_rate != target_sr:
audio = audio.set_frame_rate(target_sr)
if audio.channels > 1:
audio = audio.set_channels(1)
data = np.array(audio.get_array_of_samples())
if audio.sample_width == 2:
data = data.astype(np.float32) / np.iinfo(np.int16).max
elif audio.sample_width == 4:
data = data.astype(np.float32) / np.iinfo(np.int32).max
else:
raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))
else:
with sf.SoundFile(file_path) as audio:
original_sr = audio.samplerate
channels = audio.channels
max_frames = int((start + duration) * original_sr)
audio.seek(int(start * original_sr))
frames_to_read = min(max_frames, len(audio))
data = audio.read(frames_to_read)
if data.max() > 1 or data.min() < -1:
data = data / max(abs(data.max()), abs(data.min()))
if original_sr != target_sr:
if channels == 1:
data = librosa.resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
else:
data = librosa.resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
else:
if channels != 1:
data = data.T[0]
if data.min() >= 0:
data = 2 * data / abs(data.max()) - 1.0
else:
data = data / max(abs(data.max()), abs(data.min()))
return data
# @spaces.GPU
@torch.no_grad()
def compute_laionclap_text_audio_sim(audio_file, laionclap_model, outputs):
try:
data = load_audio(audio_file, target_sr=48000)
except Exception as e:
print(audio_file, 'unsuccessful due to', e)
return [0.0] * len(outputs)
audio_data = data.reshape(1, -1)
audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float().to(device)
audio_embed = laionclap_model.get_audio_embedding_from_data(x=audio_data_tensor, use_tensor=True)
text_embed = laionclap_model.get_text_embedding(outputs, use_tensor=True)
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
cos_similarity = cos(audio_embed.repeat(text_embed.shape[0], 1), text_embed)
return cos_similarity.squeeze().cpu().numpy()
inference_kwargs = {
"do_sample": True,
"top_k": 50,
"top_p": 0.95,
"num_return_sequences": 20
}
config = yaml.load(open('chat.yaml'), Loader=yaml.FullLoader)
clap_config = config['clap_config']
model_config = config['model_config']
text_tokenizer = prepare_tokenizer(model_config)
DataProcessor = AudioTextDataProcessor(
data_root='./',
clap_config=clap_config,
tokenizer=text_tokenizer,
max_tokens=512,
)
laionclap_model = load_laionclap()
model = prepare_model(
model_config=model_config,
clap_config=clap_config,
checkpoint_path='chat.pt',
device=device
)
# @spaces.GPU
def inference_item(name, prompt):
item = {
'name': str(name),
'prefix': 'The task is dialog.',
'prompt': str(prompt)
}
processed_item = DataProcessor.process(item)
outputs = inference(
model, text_tokenizer, item, processed_item,
inference_kwargs,
device=device
)
laionclap_scores = compute_laionclap_text_audio_sim(
item["name"],
laionclap_model,
outputs
)
outputs_joint = [(output, score) for (output, score) in zip(outputs, laionclap_scores)]
outputs_joint.sort(key=lambda x: -x[1])
return outputs_joint[0][0]
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #000000;
background: #000000;
}
input[type='range'] {
accent-color: #000000;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#generated_id{
min-height: 700px
}
#setting_id{
margin-bottom: 12px;
text-align: center;
font-weight: 900;
}
"""
ui = gr.Blocks(css=css, title="Audio Flamingo - Demo")
with ui:
gr.HTML(
"""
<div style="text-align: center; max-width: 900px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.5rem;
"
>
<h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;">
Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 125%">
<a href="https://arxiv.org/abs/2402.01831">[Paper]</a> <a href="https://github.com/NVIDIA/audio-flamingo">[Code]</a> <a href="https://audioflamingo.github.io/">[Demo Website]</a> <a href="https://www.youtube.com/watch?v=ucttuS28RVE">[Demo Video]</a>
</p>
</div>
"""
)
gr.HTML(
"""
<div>
<h3>Overview</h3>
Audio Flamingo is an audio language model that can understand sounds beyond speech.
It can also answer questions about the sound in natural language. <br>
Examples of questions include: <br>
- Can you briefly describe what you hear in this audio? <br>
- What is the emotion conveyed in this music? <br>
- Where is this audio usually heard? <br>
- What place is this music usually played at? <br>
</div>
"""
)
name = gr.Textbox(
label="Audio file path (choose one from: audio/wav{1--6}.wav)",
value="audio/wav1.wav"
)
prompt = gr.Textbox(
label="Instruction",
value='Can you briefly describe what you hear in this audio?'
)
with gr.Row():
play_audio_button = gr.Button("Play Audio")
audio_output = gr.Audio(label="Playback")
play_audio_button.click(fn=lambda x: x, inputs=name, outputs=audio_output)
inference_button = gr.Button("Inference")
output_text = gr.Textbox(label="Audio Flamingo output")
inference_button.click(
fn=inference_item,
inputs=[name, prompt],
outputs=output_text
)
ui.queue()
ui.launch()
|