File size: 13,349 Bytes
bbe9860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import copy

import streamlit as st
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from sentence_transformers.cross_encoder import CrossEncoder
from st_aggrid import GridOptionsBuilder, AgGrid
import pickle
import torch
from transformers import DPRQuestionEncoderTokenizer, AutoModel
from pathlib import Path
import base64
import regex
import tokenizers

st.set_page_config(layout="wide")

DATAFRAME_FILE_ORIGINAL = 'policyQA_original.csv'
DATAFRAME_FILE_BSBS = 'policyQA_bsbs_sentence.csv'

selectbox_selections = {
    'Retrieve - Rerank (with fine-tuned cross-encoder)': 1,
    'Dense Passage Retrieval':2,
    'Retrieve - Reranking with DPR':3,
    'Retrieve - Rerank':4
}
imagebox_selections = {
    'Retrieve - Rerank (with fine-tuned cross-encoder)': 'Retrieve-rerank-trained-cross-encoder.png',
    'Dense Passage Retrieval': 'DPR_pipeline.png',
    'Retrieve - Reranking with DPR': 'Retrieve-rerank-DPR.png',
    'Retrieve - Rerank': 'retrieve-rerank.png'
}

def retrieve_rerank(question):
    # Semantic Search (Retrieve)
    question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
    hits = util.semantic_search(question_embedding, context_embeddings, top_k=100)
    if len(hits) == 0:
        return []
    hits = hits[0]
    # Rerank - score all retrieved passages with cross-encoder
    cross_inp = [[question, contexes[hit['corpus_id']]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp)

    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx]

    # Output of top-5 hits from re-ranker
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    top_5_contexes = []
    top_5_scores = []
    for hit in hits[0:20]:
        top_5_contexes.append(contexes[hit['corpus_id']])
        top_5_scores.append(hit['cross-score'])
    return top_5_contexes, top_5_scores



@st.cache(show_spinner=False, allow_output_mutation=True)
def load_paragraphs(path):
    with open(path, "rb") as fIn:
        cache_data = pickle.load(fIn)
        corpus_sentences = cache_data['contexes']
        corpus_embeddings = cache_data['embeddings']

    return corpus_embeddings, corpus_sentences

@st.cache(show_spinner=False)
def load_dataframes():
    data_original = pd.read_csv(DATAFRAME_FILE_ORIGINAL, index_col=0, sep='|')
    data_bsbs = pd.read_csv(DATAFRAME_FILE_BSBS, index_col=0, sep='|')
    data_original = data_original.sample(frac=1).reset_index(drop=True)
    data_bsbs = data_bsbs.sample(frac=1).reset_index(drop=True)
    return data_original, data_bsbs

def dot_product(question_output, context_output):
    mat1 = torch.unsqueeze(question_output, dim=1)
    mat2 = torch.unsqueeze(context_output, dim=2)
    result = torch.bmm(mat1, mat2)
    result = torch.squeeze(result, dim=1)
    result = torch.squeeze(result, dim=1)
    return result

def retrieve_rerank_DPR(question):
    hits = retrieve_with_dpr_embeddings(question)
    return rerank_with_DPR(hits, question)

def DPR_reranking(question, selected_contexes, selected_embeddings):
    scores = []
    tokenized_question = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt",
                                            add_special_tokens=True)
    question_output = dpr_trained.model.question_model(**tokenized_question)
    question_output = question_output['pooler_output']
    for context_embedding in selected_embeddings:
        score = dot_product(question_output, context_embedding)
        scores.append(score.detach().cpu())

    scores_index = sorted(range(len(scores)), key=lambda x: scores[x], reverse=True)
    contexes_list = []
    scores_final = []
    for i, idx in enumerate(scores_index[:5]):
        scores_final.append(scores[idx])
        contexes_list.append(selected_contexes[idx])
    return scores_final, contexes_list

def search_pipeline(question, search_method):
    if search_method == 1: #Retrieve - rerank with fine-tuned cross encoder
        return retrieve_rerank_with_trained_cross_encoder(question)
    if search_method == 2:
        return custom_dpr_pipeline(question) # DPR only
    if search_method == 3:
        return retrieve_rerank_DPR(question)
    if search_method == 4:
        return retrieve_rerank(question)


def custom_dpr_pipeline(question):
    #paragraphs
    tokenized_question = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt",
                                            add_special_tokens=True)
    question_embedding = dpr_trained.model.question_model(**tokenized_question)
    question_embedding = question_embedding['pooler_output']
    results_list = []
    for i,context_embedding in enumerate(dpr_context_embeddings):
        score = dot_product(question_embedding, context_embedding)
        results_list.append(score.detach().cpu().numpy()[0])

    hits = sorted(range(len(results_list)), key=lambda i: results_list[i], reverse=True)
    top_5_contexes = []
    top_5_scores = []
    for j in hits[0:5]:
        top_5_contexes.append(dpr_contexes[j])
        top_5_scores.append(results_list[j])
    return top_5_contexes, top_5_scores

def retrieve(question, corpus_embeddings):
    # Semantic Search (Retrieve)
    question_embedding = bi_encoder.encode(question, convert_to_tensor=True)
    hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=100)
    if len(hits) == 0:
        return []
    hits = hits[0]
    return hits

def retrieve_with_dpr_embeddings(question):
    # Semantic Search (Retrieve)
    question_tokens = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt",
                                            add_special_tokens=True)

    question_embedding = dpr_trained.model.question_model(**question_tokens)['pooler_output']
    question_embedding = torch.squeeze(question_embedding, dim=0)
    corpus_embeddings = torch.stack(dpr_context_embeddings)
    corpus_embeddings = torch.squeeze(corpus_embeddings, dim=1)
    hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=100)
    if len(hits) == 0:
        return []
    hits = hits[0]
    return hits

def rerank_with_DPR(hits, question):
    # Rerank - score all retrieved passages with cross-encoder
    selected_contexes = [dpr_contexes[hit['corpus_id']] for hit in hits]
    selected_embeddings = [dpr_context_embeddings[hit['corpus_id']] for hit in hits]
    top_5_scores, top_5_contexes = DPR_reranking(question, selected_contexes, selected_embeddings)
    return top_5_contexes, top_5_scores

def DPR_reranking(question, selected_contexes, selected_embeddings):
    scores = []
    tokenized_question = question_tokenizer(question, padding=True, truncation=True, return_tensors="pt",
                                            add_special_tokens=True)
    question_output = dpr_trained.model.question_model(**tokenized_question)
    question_output = question_output['pooler_output']
    for context_embedding in selected_embeddings:
        score = dot_product(question_output, context_embedding)
        scores.append(score.detach().cpu().numpy()[0])

    scores_index = sorted(range(len(scores)), key=lambda x: scores[x], reverse=True)
    contexes_list = []
    scores_final = []
    for i, idx in enumerate(scores_index[:5]):
        scores_final.append(scores[idx])
        contexes_list.append(selected_contexes[idx])
    return scores_final, contexes_list


def retrieve_rerank_with_trained_cross_encoder(question):
    hits = retrieve(question, context_embeddings)
    cross_inp = [(question, contexes[hit['corpus_id']]) for hit in hits]
    cross_scores = trained_cross_encoder.predict(cross_inp)
    # Sort results by the cross-encoder scores
    for idx in range(len(cross_scores)):
        hits[idx]['cross-score'] = cross_scores[idx][0]

    # Output of top-5 hits from re-ranker
    hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
    top_5_contexes = []
    top_5_scores = []
    for hit in hits[0:5]:
        top_5_contexes.append(contexes[hit['corpus_id']])
        top_5_scores.append(hit['cross-score'])
    return top_5_contexes, top_5_scores


def interactive_table(dataframe):
    gb = GridOptionsBuilder.from_dataframe(dataframe)
    gb.configure_pagination(paginationAutoPageSize=True)
    gb.configure_side_bar()
    gb.configure_selection('single', rowMultiSelectWithClick=True,
                           groupSelectsChildren="Group checkbox select children")  # Enable multi-row selection
    gridOptions = gb.build()
    grid_response = AgGrid(
        dataframe,
        gridOptions=gridOptions,
        data_return_mode='AS_INPUT',
        update_mode='SELECTION_CHANGED',
        enable_enterprise_modules=False,
        fit_columns_on_grid_load=False,
        theme='streamlit',  # Add theme color to the table
        height=350,
        width='100%',
        reload_data=False
    )
    return grid_response

def img_to_bytes(img_path):
    img_bytes = Path(img_path).read_bytes()
    encoded = base64.b64encode(img_bytes).decode()
    return encoded

def qa_main_widgetsv2():
    st.title("Question Answering Demo")
    st.markdown("""---""")
    option = st.selectbox("Select a search method:", list(selectbox_selections.keys()))
    header_html = "<center> <img src='data:image/png;base64,{}' class='img-fluid' width='60%', height='40%'> </center>".format(
        img_to_bytes(imagebox_selections[option])
    )
    st.markdown(
        header_html, unsafe_allow_html=True,
    )
    st.markdown("""---""")
    col1, col2, col3 = st.columns([2, 1, 1])
    with col1:
        form = st.form(key='first_form')
        question = form.text_area("What is your question?:", height=200)
        submit = form.form_submit_button('Submit')
        if "form_submit" not in st.session_state:
            st.session_state.form_submit = False
        if submit:
            st.session_state.form_submit = True
        if st.session_state.form_submit and question != '':
            with st.spinner(text='Related context search in progress..'):
                top_5_contexes, top_5_scores = search_pipeline(question.strip(), selectbox_selections[option])
            if len(top_5_contexes) == 0:
                st.error("Related context not found!")
                st.session_state.form_submit = False
            else:
                for i, context in enumerate(top_5_contexes):
                    st.markdown(f"## Related Context - {i + 1} (score: {top_5_scores[i]:.2f})")
                    st.markdown(context)
                    st.markdown("""---""")
    with col2:
        st.markdown("## Original Questions")
        grid_response = interactive_table(dataframe_original)
        data1 = grid_response['selected_rows']
        if "grid_click_1" not in st.session_state:
            st.session_state.grid_click_1 = False
        if len(data1) > 0:
            st.session_state.grid_click_1 = True
        if st.session_state.grid_click_1:
            selection = data1[0]
            #   st.markdown("## Context & Answer:")
            st.markdown("### Context:")
            st.write(selection['context'])
            st.markdown("### Question:")
            st.write(selection['question'])
            st.markdown("### Answer:")
            st.write(selection['answer'])
            st.session_state.grid_click_1 = False
    with col3:
        st.markdown("## Our Questions")
        grid_response = interactive_table(dataframe_bsbs)
        data2 = grid_response['selected_rows']
        if "grid_click_2" not in st.session_state:
            st.session_state.grid_click_2 = False
        if len(data2) > 0:
            st.session_state.grid_click_2 = True
        if st.session_state.grid_click_2:
            selection = data2[0]
            #   st.markdown("## Context & Answer:")
            st.markdown("### Context:")
            st.write(selection['context'])
            st.markdown("### Question:")
            st.write(selection['question'])
            st.markdown("### Answer:")
            st.write(selection['answer'])
            st.session_state.grid_click_2 = False

@st.cache(show_spinner=False, allow_output_mutation = True)
def load_models(dpr_model_path, auth_token, cross_encoder_model_path):
    dpr_trained = AutoModel.from_pretrained(dpr_model_path, use_auth_token=auth_token,
                                            trust_remote_code=True)
    bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
    cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
    bi_encoder.max_seq_length = 500
    trained_cross_encoder = CrossEncoder(cross_encoder_model_path)
    question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
    return dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer

context_embeddings, contexes = load_paragraphs('context-embeddings.pkl')
dpr_context_embeddings, dpr_contexes = load_paragraphs('custom-dpr-context-embeddings.pkl')
dataframe_original, dataframe_bsbs = load_dataframes()
dpr_trained, bi_encoder, cross_encoder, trained_cross_encoder, question_tokenizer = copy.deepcopy(load_models(st.secrets["DPR_MODEL_PATH"], st.secrets["AUTH_TOKEN"], st.secrets["CROSS_ENCODER_MODEL_PATH"]))

qa_main_widgetsv2()