barthfab commited on
Commit
12e61ee
1 Parent(s): 6f6732f
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md CHANGED
@@ -1,12 +1,36 @@
1
  ---
2
- title: Euro Leaderboard
3
- emoji: 📉
4
- colorFrom: blue
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.26.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Occiglot Euro LLM Leaderboard
3
+ emoji: 🥇
4
+ colorFrom: green
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 4.4.0
8
  app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ Most of the variables to change for a default leaderboard are in env (replace the path for your leaderboard) and src/display/about.
16
+
17
+ Results files should have the following format:
18
+ ```
19
+ {
20
+ "config": {
21
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
22
+ "model_name": "path of the model on the hub: org/model",
23
+ "model_sha": "revision on the hub",
24
+ },
25
+ "results": {
26
+ "task_name": {
27
+ "metric_name": score,
28
+ },
29
+ "task_name2": {
30
+ "metric_name": score,
31
+ }
32
+ }
33
+ }
34
+ ```
35
+
36
+ Request files are created automatically by this tool.
app.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import os
4
+ from apscheduler.schedulers.background import BackgroundScheduler
5
+ from huggingface_hub import snapshot_download
6
+
7
+ from src.display.about import (
8
+ CITATION_BUTTON_LABEL,
9
+ CITATION_BUTTON_TEXT,
10
+ EVALUATION_QUEUE_TEXT,
11
+ INTRODUCTION_TEXT,
12
+ LLM_BENCHMARKS_TEXT,
13
+ TITLE,
14
+ OCCIGLOT_SUPPORT,
15
+ )
16
+ from src.display.css_html_js import custom_css
17
+ from src.display.utils import (
18
+ BENCHMARK_COLS,
19
+ COLS,
20
+ EVAL_COLS,
21
+ EVAL_TYPES,
22
+ NUMERIC_INTERVALS,
23
+ TYPES,
24
+ AutoEvalColumn,
25
+ ModelType,
26
+ fields,
27
+ WeightType,
28
+ Precision
29
+ )
30
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
31
+ from src.populate import get_evaluation_queue_df, get_leaderboard_df
32
+ from src.submission.submit import add_new_eval
33
+
34
+
35
+ def restart_space():
36
+ API.restart_space(repo_id=REPO_ID, token=TOKEN)
37
+
38
+ try:
39
+ snapshot_download(
40
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, token=TOKEN, repo_type="dataset", tqdm_class=None, etag_timeout=30
41
+ )
42
+ except Exception:
43
+ restart_space()
44
+ try:
45
+ snapshot_download(
46
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, token=TOKEN, repo_type="dataset", tqdm_class=None, etag_timeout=30
47
+ )
48
+ except Exception:
49
+ restart_space()
50
+
51
+ raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
52
+ leaderboard_df = original_df.copy()
53
+
54
+ (
55
+ finished_eval_queue_df,
56
+ running_eval_queue_df,
57
+ pending_eval_queue_df,
58
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
+
60
+
61
+ # Searching and filtering
62
+ def update_table(
63
+ hidden_df: pd.DataFrame,
64
+ columns: list,
65
+ type_query: list,
66
+ precision_query: str,
67
+ size_query: list,
68
+ show_deleted: bool,
69
+ query: str,
70
+ ):
71
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
72
+ filtered_df = filter_queries(query, filtered_df)
73
+ df = select_columns(filtered_df, columns)
74
+ return df
75
+
76
+
77
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
78
+ return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
79
+
80
+
81
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
82
+ always_here_cols = [
83
+ #AutoEvalColumn.model_type_symbol.name,
84
+ AutoEvalColumn.model.name,
85
+ ]
86
+ # We use COLS to maintain sorting
87
+ filtered_df = df[
88
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
89
+ ]
90
+ return filtered_df
91
+
92
+
93
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
94
+ final_df = []
95
+ if query != "":
96
+ queries = [q.strip() for q in query.split(";")]
97
+ for _q in queries:
98
+ _q = _q.strip()
99
+ if _q != "":
100
+ temp_filtered_df = search_table(filtered_df, _q)
101
+ if len(temp_filtered_df) > 0:
102
+ final_df.append(temp_filtered_df)
103
+ if len(final_df) > 0:
104
+ filtered_df = pd.concat(final_df)
105
+ filtered_df = filtered_df.drop_duplicates(
106
+ subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
107
+ )
108
+
109
+ return filtered_df
110
+
111
+
112
+ def filter_models(
113
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
114
+ ) -> pd.DataFrame:
115
+ # Show all models
116
+ if show_deleted:
117
+ filtered_df = df
118
+ else: # Show only still on the hub models
119
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
120
+
121
+ type_emoji = [t[0] for t in type_query]
122
+ #filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
123
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
124
+
125
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
126
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
127
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
128
+ filtered_df = filtered_df.loc[mask]
129
+
130
+ return filtered_df
131
+
132
+
133
+ demo = gr.Blocks(css=custom_css)
134
+ with demo:
135
+ gr.HTML(TITLE)
136
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
137
+
138
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
139
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
140
+ with gr.Row():
141
+ search_bar = gr.Textbox(
142
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
143
+ show_label=False,
144
+ elem_id="search-bar",
145
+ )
146
+ with gr.Row():
147
+ shown_columns = gr.CheckboxGroup(
148
+ choices=[
149
+ c.name
150
+ for c in fields(AutoEvalColumn)
151
+ if not c.hidden and not c.never_hidden and not c.dummy
152
+ ],
153
+ value=[
154
+ c.name
155
+ for c in fields(AutoEvalColumn)
156
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
157
+ ],
158
+ label="Select columns to show",
159
+ elem_id="column-select",
160
+ interactive=True,
161
+ )
162
+ with gr.Row():
163
+ with gr.Column():
164
+ with gr.Row(elem_id="box-filter"):
165
+ deleted_models_visibility = gr.Checkbox(
166
+ value=True, label="Show gated/private/deleted models", interactive=True,
167
+ )
168
+ filter_columns_type = gr.CheckboxGroup(
169
+ label="Model types",
170
+ choices=[t.to_str() for t in ModelType],
171
+ value=[t.to_str() for t in ModelType],
172
+ interactive=True,
173
+ elem_id="filter-columns-type",
174
+ visible=False,
175
+ )
176
+ filter_columns_precision = gr.CheckboxGroup(
177
+ label="Precision",
178
+ choices=[i.value.name for i in Precision],
179
+ value=[i.value.name for i in Precision],
180
+ interactive=True,
181
+ elem_id="filter-columns-precision",
182
+ visible=False,
183
+ )
184
+ filter_columns_size = gr.CheckboxGroup(
185
+ label="Model sizes (in billions of parameters)",
186
+ choices=list(NUMERIC_INTERVALS.keys()),
187
+ value=list(NUMERIC_INTERVALS.keys()),
188
+ interactive=True,
189
+ elem_id="filter-columns-size",
190
+ visible=False,
191
+ )
192
+
193
+ leaderboard_table = gr.components.Dataframe(
194
+ value=leaderboard_df[
195
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
196
+ + shown_columns.value
197
+ + [AutoEvalColumn.dummy.name]
198
+ ],
199
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
200
+ datatype=TYPES,
201
+ elem_id="leaderboard-table",
202
+ interactive=False,
203
+ visible=True,
204
+ column_widths=["33%"] #"2%",
205
+ )
206
+
207
+ # Dummy leaderboard for handling the case when the user uses backspace key
208
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
209
+ value=original_df[COLS],
210
+ headers=COLS,
211
+ datatype=TYPES,
212
+ visible=False,
213
+ )
214
+ search_bar.submit(
215
+ update_table,
216
+ [
217
+ hidden_leaderboard_table_for_search,
218
+ shown_columns,
219
+ filter_columns_type,
220
+ filter_columns_precision,
221
+ filter_columns_size,
222
+ deleted_models_visibility,
223
+ search_bar,
224
+ ],
225
+ leaderboard_table,
226
+ )
227
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
228
+ selector.change(
229
+ update_table,
230
+ [
231
+ hidden_leaderboard_table_for_search,
232
+ shown_columns,
233
+ filter_columns_type,
234
+ filter_columns_precision,
235
+ filter_columns_size,
236
+ deleted_models_visibility,
237
+ search_bar,
238
+ ],
239
+ leaderboard_table,
240
+ queue=True,
241
+ )
242
+
243
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
244
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
245
+
246
+ with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
247
+ with gr.Column():
248
+ with gr.Row():
249
+ gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
250
+
251
+ with gr.Column():
252
+ with gr.Accordion(
253
+ f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
254
+ open=False,
255
+ ):
256
+ with gr.Row():
257
+ finished_eval_table = gr.components.Dataframe(
258
+ value=finished_eval_queue_df,
259
+ headers=EVAL_COLS,
260
+ datatype=EVAL_TYPES,
261
+ row_count=5,
262
+ )
263
+ with gr.Accordion(
264
+ f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
265
+ open=False,
266
+ ):
267
+ with gr.Row():
268
+ running_eval_table = gr.components.Dataframe(
269
+ value=running_eval_queue_df,
270
+ headers=EVAL_COLS,
271
+ datatype=EVAL_TYPES,
272
+ row_count=5,
273
+ )
274
+
275
+ with gr.Accordion(
276
+ f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
277
+ open=False,
278
+ ):
279
+ with gr.Row():
280
+ pending_eval_table = gr.components.Dataframe(
281
+ value=pending_eval_queue_df,
282
+ headers=EVAL_COLS,
283
+ datatype=EVAL_TYPES,
284
+ row_count=5,
285
+ )
286
+ with gr.Row():
287
+ gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
288
+
289
+ with gr.Row():
290
+ with gr.Column():
291
+ model_name_textbox = gr.Textbox(label="Model name")
292
+ revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
293
+ model_type = gr.Dropdown(
294
+ choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
295
+ label="Model type",
296
+ multiselect=False,
297
+ value=None,
298
+ interactive=True,
299
+ )
300
+
301
+ with gr.Column():
302
+ precision = gr.Dropdown(
303
+ choices=[i.value.name for i in Precision if i != Precision.Unknown],
304
+ label="Precision",
305
+ multiselect=False,
306
+ value="float16",
307
+ interactive=True,
308
+ )
309
+ weight_type = gr.Dropdown(
310
+ choices=[i.value.name for i in WeightType],
311
+ label="Weights type",
312
+ multiselect=False,
313
+ value="Original",
314
+ interactive=True,
315
+ )
316
+ base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
317
+
318
+ submit_button = gr.Button("Submit Eval")
319
+ submission_result = gr.Markdown()
320
+ submit_button.click(
321
+ add_new_eval,
322
+ [
323
+ model_name_textbox,
324
+ base_model_name_textbox,
325
+ revision_name_textbox,
326
+ precision,
327
+ weight_type,
328
+ model_type,
329
+ ],
330
+ submission_result,
331
+ )
332
+ with gr.TabItem("🤓 Support us", elem_id="support-page", id=4):
333
+ gr.Markdown(OCCIGLOT_SUPPORT, elem_classes="markdown-text")
334
+
335
+ with gr.Row():
336
+ with gr.Accordion("📙 Citation", open=False):
337
+ citation_button = gr.Textbox(
338
+ value=CITATION_BUTTON_TEXT,
339
+ label=CITATION_BUTTON_LABEL,
340
+ lines=20,
341
+ elem_id="citation-button",
342
+ show_copy_button=True,
343
+ )
344
+
345
+ scheduler = BackgroundScheduler()
346
+ scheduler.add_job(restart_space, "interval", seconds=1800)
347
+ scheduler.start()
348
+ demo.queue(default_concurrency_limit=40).launch()
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
7
+ huggingface-hub>=0.18.0
8
+ matplotlib==3.7.1
9
+ numpy==1.24.2
10
+ pandas==2.0.0
11
+ python-dateutil==2.8.2
12
+ requests==2.28.2
13
+ tqdm==4.65.0
14
+ transformers==4.35.2
15
+ tokenizers>=0.15.0
scripts/create_request_file.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pprint
4
+ import re
5
+ from datetime import datetime, timezone
6
+
7
+ import click
8
+ from colorama import Fore
9
+ from huggingface_hub import HfApi, snapshot_download
10
+
11
+ EVAL_REQUESTS_PATH = "eval-queue"
12
+ QUEUE_REPO = "open-llm-leaderboard/requests"
13
+
14
+ precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ")
15
+ model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
16
+ weight_types = ("Original", "Delta", "Adapter")
17
+
18
+
19
+ def get_model_size(model_info, precision: str):
20
+ size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
21
+ try:
22
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
23
+ except (AttributeError, TypeError):
24
+ try:
25
+ size_match = re.search(size_pattern, model_info.modelId.lower())
26
+ model_size = size_match.group(0)
27
+ model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
28
+ except AttributeError:
29
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
30
+
31
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
32
+ model_size = size_factor * model_size
33
+ return model_size
34
+
35
+
36
+ def main():
37
+ api = HfApi()
38
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
39
+ snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset")
40
+
41
+ model_name = click.prompt("Enter model name")
42
+ revision = click.prompt("Enter revision", default="main")
43
+ precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
44
+ model_type = click.prompt("Enter model type", type=click.Choice(model_types))
45
+ weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
46
+ base_model = click.prompt("Enter base model", default="")
47
+ status = click.prompt("Enter status", default="FINISHED")
48
+
49
+ try:
50
+ model_info = api.model_info(repo_id=model_name, revision=revision)
51
+ except Exception as e:
52
+ print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
53
+ return 1
54
+
55
+ model_size = get_model_size(model_info=model_info, precision=precision)
56
+
57
+ try:
58
+ license = model_info.cardData["license"]
59
+ except Exception:
60
+ license = "?"
61
+
62
+ eval_entry = {
63
+ "model": model_name,
64
+ "base_model": base_model,
65
+ "revision": revision,
66
+ "private": False,
67
+ "precision": precision,
68
+ "weight_type": weight_type,
69
+ "status": status,
70
+ "submitted_time": current_time,
71
+ "model_type": model_type,
72
+ "likes": model_info.likes,
73
+ "params": model_size,
74
+ "license": license,
75
+ }
76
+
77
+ user_name = ""
78
+ model_path = model_name
79
+ if "/" in model_name:
80
+ user_name = model_name.split("/")[0]
81
+ model_path = model_name.split("/")[1]
82
+
83
+ pprint.pprint(eval_entry)
84
+
85
+ if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
86
+ click.echo("continuing...")
87
+
88
+ out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
89
+ os.makedirs(out_dir, exist_ok=True)
90
+ out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
91
+
92
+ with open(out_path, "w") as f:
93
+ f.write(json.dumps(eval_entry))
94
+
95
+ api.upload_file(
96
+ path_or_fileobj=out_path,
97
+ path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
98
+ repo_id=QUEUE_REPO,
99
+ repo_type="dataset",
100
+ commit_message=f"Add {model_name} to eval queue",
101
+ )
102
+ else:
103
+ click.echo("aborting...")
104
+
105
+
106
+ if __name__ == "__main__":
107
+ main()
src/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/display/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/display/about.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+
4
+ @dataclass
5
+ class Task:
6
+ benchmark: str
7
+ metric: str
8
+ col_name: str
9
+
10
+ @dataclass
11
+ class Language:
12
+ col_name: str
13
+ ln_abb: str
14
+ bele_abb: str
15
+
16
+
17
+ # Init: to update with your specific keys
18
+ class Tasks(Enum):
19
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
20
+ task0 = Task("harness|arc_challenge|25", "acc_norm,none", "🇬🇧ARC EN")
21
+ task1 = Task("harness|truthfulqa_mc2|0", "acc,none", "🇬🇧TruthfulQA EN")
22
+ task2 = Task("harness|belebele_eng_Latn|5", "acc_norm,none", "🇬🇧Belebele EN")
23
+ task3 = Task("harness|hellaswag|10", "acc,none", "🇬🇧HellaSwag EN")
24
+ task4 = Task("harness|hendrycksTest|5", "acc,none", "🇬🇧MMLU EN")
25
+ task5 = Task("harness|arc_challenge_m_de|25", "acc_norm,none", "🇩🇪ARC DE")
26
+ task6 = Task("harness|truthfulqa_mc2_m_de|0", "acc,none", "🇩🇪TruthfulQA DE")
27
+ task7 = Task("harness|belebele_deu_Latn|5", "acc_norm,none", "🇩🇪Belebele DE")
28
+ task8 = Task("harness|hellaswag_de|10", "acc_norm,none", "🇩🇪HellaSwag DE")
29
+ task9 = Task("harness|mmlu_m_de|5", "acc,none", "🇩🇪MMLU DE")
30
+ task10 = Task("harness|arc_challenge_m_fr|25", "acc_norm,none", "🇫🇷ARC FR")
31
+ task11 = Task("harness|truthfulqa_mc2_m_fr|0", "acc,none", "🇫🇷TruthfulQA FR")
32
+ task12 = Task("harness|belebele_fra_Latn|5", "acc_norm,none", "🇫🇷Belebele FR")
33
+ task13 = Task("harness|hellaswag_fr|10", "acc_norm,none", "🇫🇷HellaSwag FR")
34
+ task14 = Task("harness|mmlu_m_fr|5", "acc,none", "🇫🇷MMLU FR")
35
+ task15 = Task("harness|arc_challenge_m_it|25", "acc_norm,none", "🇮🇹ARC IT")
36
+ task16 = Task("harness|truthfulqa_mc2_m_it|0", "acc,none", "🇮🇹TruthfulQA IT")
37
+ task17 = Task("harness|belebele_ita_Latn|5", "acc_norm,none", "🇮🇹Belebele IT")
38
+ task18 = Task("harness|hellaswag_it|10", "acc_norm,none", "🇮🇹HellaSwag IT")
39
+ task19 = Task("harness|mmlu_m_it|5", "acc,none", "🇮🇹MMLU IT")
40
+ task20 = Task("harness|arc_challenge_m_es|25", "acc_norm,none", "🇪🇸ARC ES")
41
+ task21 = Task("harness|truthfulqa_mc2_m_es|0", "acc,none", "🇪🇸TruthfulQA ES")
42
+ task22 = Task("harness|belebele_spa_Latn|5", "acc_norm,none", "🇪🇸Belebele ES")
43
+ task23 = Task("harness|hellaswag_es|10", "acc_norm,none", "🇪🇸HellaSwag ES")
44
+ task24 = Task("harness|mmlu_m_es|5", "acc,none", "🇪🇸MMLU ES")
45
+
46
+ class Languages(Enum):
47
+ lng0 = Language("🇩🇪 DE", "de", "deu")
48
+ lng1 = Language("🇫🇷 FR", "fr", "fra")
49
+ lng2 = Language("🇮🇹 IT", "it", "ita")
50
+ lng3 = Language("🇪🇸 ES", "es", "spa")
51
+ lng4 = Language("🇬🇧 EN", "", "eng")
52
+
53
+ # Your leaderboard name
54
+ TITLE = """<h1 align="center" id="space-title">Occiglot Euro LLM Leaderboard</h1>"""
55
+
56
+ # What does your leaderboard evaluate?
57
+ INTRODUCTION_TEXT = """
58
+ <div border="2px">
59
+ <p style="float: left;"><img src="https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png" alt="Image" style="width:200px; margin-right:10px;" border="2px"/></p>
60
+
61
+ <p border="2px">The Occiglot euro LLM leaderboard evaluates a subset of the tasks from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard" target="_blank">Open LLM Leaderboard</a> machine-translated into the four main languages from the <a href="https://github.com/nlp-uoregon/Okapi" target="_blank">Okapi benchmark</a> and <a href="https://arxiv.org/abs/2308.16884" target="_blank">Belebele </a> (French, Italian, German and Spanish).
62
+
63
+ The translated tasks are uploaded to a fork of the great [Eleuther AI Language Model Evaluation Harness](https://github.com/occiglot/euro-lm-evaluation-harness).
64
+
65
+ Disclaimer: A language is not represented by a country. Different languages can be spoken and spread in all countries around the globe. For the sake of simplicity, we have used flag emojis (🇬🇧🇮🇹🇫🇷🇪🇸🇩🇪) to represent the language, not the countries.</p>
66
+ </div>
67
+ """
68
+
69
+ # Which evaluations are you running? how can people reproduce what you have?
70
+ LLM_BENCHMARKS_TEXT = """
71
+ ## ABOUT
72
+ Disclaimer: This is a copy of the [Open LLM Leaderbaord](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) from Huggingface with the extension of the translated benchmarks.
73
+ With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.
74
+
75
+ 🤗 Submit a model for automated evaluation on the 🤗 GPU cluster on the "Submit" page!
76
+ The leaderboard's backend runs the great [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) - read more details below!
77
+
78
+ ### Tasks
79
+ 📈 We evaluate models on 5 key benchmarks using a fork of the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.
80
+
81
+ - <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
82
+ - <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
83
+ - <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
84
+ - <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA is technically a 6-shot task in the Harness because each example is prepended with 6 Q/A pairs, even in the 0-shot setting.
85
+ - <a href="https://arxiv.org/abs/2308.16884" target="_blank"> Belebele </a> (5-shot) - a multilingual multiple-choice machine reading comprehension dataset derived from FLORES-200. It evaluates and compares language model performance across 122 languages.
86
+
87
+ For all these evaluations, a higher score is a better score.
88
+ We chose these benchmarks based on the og Leaderboard from [Huggingface](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) (+Belebele 👀).
89
+
90
+ We used translations of the first 4 benchmarks from the <a href="https://arxiv.org/abs/2308.16884" target="_blank">Evaluation Framework for Multilingual Large Language Models </a> which was released as a part of the <a href="https://arxiv.org/abs/2307.16039" target="_blank"> Okapi </a> framework: a benchmark for multilingual large language models (LLMs) of <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a>, <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a>, <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a>, and <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a>.
91
+
92
+ ### Results
93
+ You can find:
94
+ - detailed numerical results in the `results` Hugging Face dataset: https://huggingface.co/datasets/occiglot/euro-llm-leaderboard-results
95
+ - details on the input/outputs for the models in the `details` of each model, which you can access by clicking the 📄 emoji after the model name
96
+ - community queries and running status in the `requests` Hugging Face dataset: https://huggingface.co/datasets/occiglot/euro-llm-leaderboard-requests
97
+
98
+ If a model's name contains "Flagged", this indicates it has been flagged by the community, and should probably be ignored! Clicking the link will redirect you to the discussion about the model.
99
+
100
+ ---------------------------
101
+
102
+ ## REPRODUCIBILITY
103
+ To reproduce our results, here are the commands you can run, using [this version](https://github.com/occiglot/euro-lm-evaluation-harness) of fork of the Eleuther AI Harness:
104
+ `python main.py --model hf --model_args "pretrained=<your_model>" --tasks <task_list> --num_fewshot <n_few_shot> --batch_size auto:4`
105
+
106
+ ```
107
+ python main.py --model=hf-causal-experimental \
108
+ --model_args="pretrained=<your_model>" \
109
+ --tasks=<task_list> \
110
+ --num_fewshot=<n_few_shot> \
111
+ --batch_size=auto:4 \
112
+ --output_path=<output_path>
113
+ ```
114
+
115
+ **Note:** We evaluate all models on a single node of one H100/A100-80GB.
116
+ *You can expect results to vary slightly for different batch sizes because of padding.*
117
+
118
+ The tasks and few shots parameters are:
119
+ - ARC: 25-shot, *arc-challenge,arc-challenge_m_de,arc-challenge_m_es,arc-challenge_m_it,arc-challenge_m_fr* (`acc_norm`)
120
+ - HellaSwag: 10-shot, *hellaswag,hellaswag_es,hellaswag_it,hellaswag_fr,hellaswag_de* (`acc_norm`)
121
+ - TruthfulQA: 0-shot, *truthfulqa-mc,truthfulqa_mc2_m_de,truthfulqa_mc2_m_fr,truthfulqa_mc2_m_es,truthfulqa_mc2_m_it* (`mc2`)
122
+ - MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions,mmlu_m_es,mmlu_m_fr,mmlu_m_it,mmlu_m_de* (average of all the results `acc`)
123
+ - Belebele: 5-shot, *belebel_eng_Latn,belebel_ita_Latn,belebel_deu_Latn,belebel_fra_Latn,belebel_spa_Latn* (`acc_norm`)
124
+
125
+ **Note:** The number of few shot parameters and the metric is identical for each benchmark across all translations.
126
+
127
+ Side note on the baseline scores:
128
+ - for log-likelihood evaluation, we select the random baseline
129
+
130
+ ---------------------------
131
+
132
+ ## RESOURCES
133
+
134
+ ### Quantization
135
+ To get more information about quantization, see:
136
+ - 8 bits: [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), [paper](https://arxiv.org/abs/2208.07339)
137
+ - 4 bits: [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes), [paper](https://arxiv.org/abs/2305.14314)
138
+
139
+ ### Useful links
140
+ - [Community resources](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/174)
141
+ - [Collection of best models](https://huggingface.co/collections/open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03)
142
+
143
+ ### Other cool leaderboards:
144
+ - [OG Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
145
+ - [LLM safety](https://huggingface.co/spaces/AI-Secure/llm-trustworthy-leaderboard)
146
+ - [LLM performance](https://huggingface.co/spaces/optimum/llm-perf-leaderboard)
147
+
148
+
149
+ """
150
+
151
+ EVALUATION_QUEUE_TEXT = """
152
+ ## Some good practices before submitting a model
153
+
154
+ ### 1) Make sure you can load your model and tokenizer using AutoClasses:
155
+ ```python
156
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
157
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
158
+ model = AutoModel.from_pretrained("your model name", revision=revision)
159
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
160
+ ```
161
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
162
+
163
+ Note: make sure your model is public!
164
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
165
+
166
+ ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
167
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
168
+
169
+ ### 3) Make sure your model has an open license!
170
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
171
+
172
+ ### 4) Fill up your model card
173
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card
174
+
175
+ ## In case of model failure
176
+ If your model is displayed in the `FAILED` category, its execution stopped.
177
+ Make sure you have followed the above steps first.
178
+ If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
179
+ """
180
+
181
+ OCCIGLOT_SUPPORT = """
182
+ Occiglot is an ongoing research collective for open-source language models for and by Europe.
183
+ We strongly believe in transparent research and exchange of ideas. If you are working on topics
184
+ relevant to European LLMs or seek to contribute to Occiglot, don't hesitate to get in touch with us or join our [Discord](https://discord.com/invite/wUpvYs4XvM)
185
+ server. **We are actively seeking collaborations!**
186
+ """
187
+
188
+ CITATION_BUTTON_LABEL = """#
189
+ Copy the following snippet to cite these results:
190
+ """
191
+
192
+ CITATION_BUTTON_TEXT = r"""@misc{OcciglotEuroLeaderboard,
193
+ author = {Barth, Fabio and Brack, Manuel and Kraus, Maurice and Ortiz Suarez, Pedro and Ostendorf, Malte and Schramowski, Patrick},
194
+ title = {Occiglot Euro LLM Leaderboard},
195
+ month = 3,
196
+ year = 2024,
197
+ version = {v0.0.1},
198
+ url = {https://huggingface.co/spaces/occiglot/euro-llm-leaderboard}"""
src/display/css_html_js.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #models-to-add-text {
8
+ font-size: 18px !important;
9
+ }
10
+
11
+ #citation-button span {
12
+ font-size: 16px !important;
13
+ }
14
+
15
+ #citation-button textarea {
16
+ font-size: 16px !important;
17
+ }
18
+
19
+ #citation-button > label > button {
20
+ margin: 6px;
21
+ transform: scale(1.3);
22
+ }
23
+
24
+ #leaderboard-table {
25
+ margin-top: 15px
26
+ }
27
+
28
+ #leaderboard-table-lite {
29
+ margin-top: 15px
30
+ }
31
+
32
+ #search-bar-table-box > div:first-child {
33
+ background: none;
34
+ border: none;
35
+ }
36
+
37
+ #search-bar {
38
+ padding: 0px;
39
+ }
40
+
41
+ /* Hides the final AutoEvalColumn */
42
+ #llm-benchmark-tab-table table td:last-child,
43
+ #llm-benchmark-tab-table table th:last-child {
44
+ display: none;
45
+ }
46
+
47
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
48
+ table td:first-child,
49
+ table th:first-child {
50
+ max-width: 400px;
51
+ overflow: auto;
52
+ white-space: nowrap;
53
+ }
54
+
55
+ .tab-buttons button {
56
+ font-size: 20px;
57
+ }
58
+
59
+ #scale-logo {
60
+ border-style: none !important;
61
+ box-shadow: none;
62
+ display: block;
63
+ margin-left: auto;
64
+ margin-right: auto;
65
+ max-width: 600px;
66
+ }
67
+
68
+ #scale-logo .download {
69
+ display: none;
70
+ }
71
+ #filter_type{
72
+ border: 0;
73
+ padding-left: 0;
74
+ padding-top: 0;
75
+ }
76
+ #filter_type label {
77
+ display: flex;
78
+ }
79
+ #filter_type label > span{
80
+ margin-top: var(--spacing-lg);
81
+ margin-right: 0.5em;
82
+ }
83
+ #filter_type label > .wrap{
84
+ width: 103px;
85
+ }
86
+ #filter_type label > .wrap .wrap-inner{
87
+ padding: 2px;
88
+ }
89
+ #filter_type label > .wrap .wrap-inner input{
90
+ width: 1px
91
+ }
92
+ #filter-columns-type{
93
+ border:0;
94
+ padding:0.5;
95
+ }
96
+ #filter-columns-size{
97
+ border:0;
98
+ padding:0.5;
99
+ }
100
+ #box-filter > .form{
101
+ border: 0
102
+ }
103
+ """
104
+
105
+ get_window_url_params = """
106
+ function(url_params) {
107
+ const params = new URLSearchParams(window.location.search);
108
+ url_params = Object.fromEntries(params);
109
+ return url_params;
110
+ }
111
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime, timezone
3
+
4
+ from huggingface_hub import HfApi
5
+ from huggingface_hub.hf_api import ModelInfo
6
+
7
+
8
+ API = HfApi()
9
+
10
+ def model_hyperlink(link, model_name):
11
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
12
+
13
+
14
+ def make_clickable_model(model_name):
15
+ link = f"https://huggingface.co/{model_name}"
16
+ return model_hyperlink(link, model_name)
17
+
18
+
19
+ def styled_error(error):
20
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
21
+
22
+
23
+ def styled_warning(warn):
24
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
25
+
26
+
27
+ def styled_message(message):
28
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
29
+
30
+
31
+ def has_no_nan_values(df, columns):
32
+ return df[columns].notna().all(axis=1)
33
+
34
+
35
+ def has_nan_values(df, columns):
36
+ return df[columns].isna().any(axis=1)
src/display/pictures/occiglot.medium.png ADDED
src/display/utils.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.about import Tasks, Languages
7
+
8
+ def fields(raw_class):
9
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
+
11
+
12
+ # These classes are for user facing column names,
13
+ # to avoid having to change them all around the code
14
+ # when a modif is needed
15
+ @dataclass
16
+ class ColumnContent:
17
+ name: str
18
+ type: str
19
+ displayed_by_default: bool
20
+ hidden: bool = False
21
+ never_hidden: bool = False
22
+ dummy: bool = False
23
+
24
+ ## Leaderboard columns
25
+ auto_eval_column_dict = []
26
+ # Init
27
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", False, True ,never_hidden=False)])
28
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
29
+ #Scores
30
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("🇪🇺 Average ⬆️", "number", True)])
31
+ for lang in Languages:
32
+ auto_eval_column_dict.append([lang.name, ColumnContent, ColumnContent(lang.value.col_name, "number", True)])
33
+
34
+ for task in Tasks:
35
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False)])
36
+
37
+ # Model information
38
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, never_hidden=False, dummy=True)])
39
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, never_hidden=False, dummy=True)])
40
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, never_hidden=False, dummy=True)])
41
+ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, never_hidden=False, dummy=True)])
42
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, never_hidden=False, dummy=True)])
43
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, never_hidden=False, dummy=True)])
44
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, never_hidden=False, dummy=True)])
45
+ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, never_hidden=False, dummy=True)])
46
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False, never_hidden=False, dummy=True)])
47
+ # Dummy column for the search bar (hidden by the custom CSS)
48
+ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
49
+
50
+ # We use make dataclass to dynamically fill the scores from Tasks
51
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
52
+
53
+ ## For the queue columns in the submission tab
54
+ @dataclass(frozen=True)
55
+ class EvalQueueColumn: # Queue column
56
+ model = ColumnContent("model", "markdown", True)
57
+ revision = ColumnContent("revision", "str", True)
58
+ private = ColumnContent("private", "bool", True)
59
+ precision = ColumnContent("precision", "str", True)
60
+ weight_type = ColumnContent("weight_type", "str", "Original")
61
+ status = ColumnContent("status", "str", True)
62
+
63
+ ## All the model information that we might need
64
+ @dataclass
65
+ class ModelDetails:
66
+ name: str
67
+ display_name: str = ""
68
+ symbol: str = "" # emoji
69
+
70
+
71
+ class ModelType(Enum):
72
+ PT = ModelDetails(name="pretrained", symbol="🟢")
73
+ FT = ModelDetails(name="fine-tuned", symbol="🔶")
74
+ IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
75
+ RL = ModelDetails(name="RL-tuned", symbol="🟦")
76
+ Unknown = ModelDetails(name="", symbol="?")
77
+
78
+ def to_str(self, separator=" "):
79
+ return f"{self.value.symbol}{separator}{self.value.name}"
80
+
81
+ @staticmethod
82
+ def from_str(type):
83
+ if "fine-tuned" in type or "🔶" in type:
84
+ return ModelType.FT
85
+ if "pretrained" in type or "🟢" in type:
86
+ return ModelType.PT
87
+ if "RL-tuned" in type or "🟦" in type:
88
+ return ModelType.RL
89
+ if "instruction-tuned" in type or "⭕" in type:
90
+ return ModelType.IFT
91
+ return ModelType.Unknown
92
+
93
+ class WeightType(Enum):
94
+ Adapter = ModelDetails("Adapter")
95
+ Original = ModelDetails("Original")
96
+ Delta = ModelDetails("Delta")
97
+
98
+ class Precision(Enum):
99
+ float16 = ModelDetails("float16")
100
+ bfloat16 = ModelDetails("bfloat16")
101
+ qt_8bit = ModelDetails("8bit")
102
+ qt_4bit = ModelDetails("4bit")
103
+ qt_GPTQ = ModelDetails("GPTQ")
104
+ Unknown = ModelDetails("?")
105
+
106
+ def from_str(precision):
107
+ if precision in ["torch.float16", "float16"]:
108
+ return Precision.float16
109
+ if precision in ["torch.bfloat16", "bfloat16"]:
110
+ return Precision.bfloat16
111
+ if precision in ["8bit"]:
112
+ return Precision.qt_8bit
113
+ if precision in ["4bit"]:
114
+ return Precision.qt_4bit
115
+ if precision in ["GPTQ", "None"]:
116
+ return Precision.qt_GPTQ
117
+ return Precision.Unknown
118
+
119
+ # Column selection
120
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
121
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
122
+ COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
123
+ TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
124
+
125
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
126
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
127
+
128
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
129
+
130
+ NUMERIC_INTERVALS = {
131
+ "?": pd.Interval(-1, 0, closed="right"),
132
+ "~1.5": pd.Interval(0, 2, closed="right"),
133
+ "~3": pd.Interval(2, 4, closed="right"),
134
+ "~7": pd.Interval(4, 9, closed="right"),
135
+ "~13": pd.Interval(9, 20, closed="right"),
136
+ "~35": pd.Interval(20, 45, closed="right"),
137
+ "~60": pd.Interval(45, 70, closed="right"),
138
+ "70+": pd.Interval(70, 10000, closed="right"),
139
+ }
src/envs.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # clone / pull the lmeh eval data
6
+ TOKEN = os.environ.get("TOKEN", None)
7
+
8
+ OWNER = "occiglot"
9
+ REPO_ID = f"{OWNER}/euro-llm-leaderboard"
10
+ QUEUE_REPO = f"{OWNER}/euro-llm-leaderboard-requests"
11
+ RESULTS_REPO = f"{OWNER}/euro-llm-leaderboard-results"
12
+
13
+ CACHE_PATH=os.getenv("HF_HOME", ".")
14
+
15
+ # Local caches
16
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
17
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
18
+
19
+ API = HfApi(token=TOKEN)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Languages
12
+ from src.submission.check_validity import is_model_on_hub
13
+
14
+
15
+ @dataclass
16
+ class EvalResult:
17
+ eval_name: str # org_model_precision (uid)
18
+ full_model: str # org/model (path on hub)
19
+ org: str
20
+ model: str
21
+ revision: str # commit hash, "" if main
22
+ results: dict
23
+ precision: Precision = Precision.Unknown
24
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
25
+ weight_type: WeightType = WeightType.Original # Original or Adapter
26
+ architecture: str = "Unknown"
27
+ license: str = "?"
28
+ likes: int = 0
29
+ num_params: int = 0
30
+ date: str = "" # submission date of request file
31
+ still_on_hub: bool = False
32
+
33
+ @classmethod
34
+ def init_from_json_file(self, json_filepath):
35
+ """Inits the result from the specific model result file"""
36
+ with open(json_filepath) as fp:
37
+ data = json.load(fp)
38
+
39
+ config = data.get("config_general")
40
+
41
+ # Precision
42
+ precision = Precision.from_str(config.get("model_dtype"))
43
+
44
+ # Get model and org
45
+ org_and_model = config.get("model_name", config.get("model_args", None))
46
+ org_and_model = org_and_model.split("/", 1)
47
+
48
+ if len(org_and_model) == 1:
49
+ org = None
50
+ model = org_and_model[0]
51
+ result_key = f"{model}_{precision.value.name}"
52
+ else:
53
+ org = org_and_model[0]
54
+ model = org_and_model[1]
55
+ result_key = f"{org}_{model}_{precision.value.name}"
56
+ full_model = "/".join(org_and_model)
57
+
58
+ still_on_hub, _, model_config = is_model_on_hub(
59
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
60
+ )
61
+ architecture = "?"
62
+ if model_config is not None:
63
+ architectures = getattr(model_config, "architectures", None)
64
+ if architectures:
65
+ architecture = ";".join(architectures)
66
+
67
+ # Extract results available in this file (some results are split in several files)
68
+ results = {}
69
+ for task in Tasks:
70
+ task = task.value
71
+
72
+ # We average all scores of a given metric (not all metrics are present in all files)
73
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
74
+ if accs.size == 0 or any([acc is None for acc in accs]):
75
+ continue
76
+
77
+ mean_acc = np.mean(accs) * 100.0
78
+ results[task.benchmark] = mean_acc
79
+
80
+ return self(
81
+ eval_name=result_key,
82
+ full_model=full_model,
83
+ org=org,
84
+ model=model,
85
+ results=results,
86
+ precision=precision,
87
+ revision= config.get("model_sha", ""),
88
+ still_on_hub=still_on_hub,
89
+ architecture=architecture
90
+ )
91
+
92
+ def update_with_request_file(self, requests_path):
93
+ """Finds the relevant request file for the current model and updates info with it"""
94
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
95
+
96
+ try:
97
+ with open(request_file, "r") as f:
98
+ request = json.load(f)
99
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
100
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
101
+ self.license = request.get("license", "?")
102
+ self.likes = request.get("likes", 0)
103
+ self.num_params = request.get("params", 0)
104
+ self.date = request.get("submitted_time", "")
105
+ except Exception:
106
+ print(f"Could not find request file for {self.org}/{self.model}")
107
+
108
+ def to_dict(self):
109
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
110
+ average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
111
+ data_dict = {
112
+ "eval_name": self.eval_name, # not a column, just a save name,
113
+ AutoEvalColumn.precision.name: self.precision.value.name,
114
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
115
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
116
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
117
+ AutoEvalColumn.architecture.name: self.architecture,
118
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
119
+ AutoEvalColumn.dummy.name: self.full_model,
120
+ AutoEvalColumn.revision.name: self.revision,
121
+ AutoEvalColumn.average.name: average,
122
+ AutoEvalColumn.license.name: self.license,
123
+ AutoEvalColumn.likes.name: self.likes,
124
+ AutoEvalColumn.params.name: self.num_params,
125
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
126
+ }
127
+
128
+ for language in Languages:
129
+ # FIX: for english only
130
+ if not language.value.ln_abb:
131
+ lng_result = [self.results["harness|arc_challenge|25"], self.results["harness|truthfulqa_mc2|0"], self.results["harness|belebele_eng_Latn|5"], self.results["harness|hellaswag|10"], self.results["harness|hendrycksTest|5"]]
132
+ else:
133
+ lng_result = [v for k, v in self.results.items() if v is not None and (f"_{language.value.ln_abb}" in k or f"_{language.value.ln_abb}" in k)]
134
+ data_dict[language.value.col_name] = sum(lng_result) / len(lng_result)
135
+
136
+ for task in Tasks:
137
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
138
+
139
+ return data_dict
140
+
141
+
142
+ def get_request_file_for_model(requests_path, model_name, precision):
143
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
144
+ request_files = os.path.join(
145
+ requests_path,
146
+ f"{model_name}_eval_request_*.json",
147
+ )
148
+ request_files = glob.glob(request_files)
149
+
150
+ # Select correct request file (precision)
151
+ request_file = ""
152
+ request_files = sorted(request_files, reverse=True)
153
+ for tmp_request_file in request_files:
154
+ with open(tmp_request_file, "r") as f:
155
+ req_content = json.load(f)
156
+ if (
157
+ req_content["status"] in ["FINISHED"]
158
+ and req_content["precision"] == precision.split(".")[-1]
159
+ ):
160
+ request_file = tmp_request_file
161
+ return request_file
162
+
163
+
164
+ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
165
+ """From the path of the results folder root, extract all needed info for results"""
166
+ model_result_filepaths = []
167
+
168
+ for root, _, files in os.walk(results_path):
169
+
170
+ # We should only have json files in model results
171
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
172
+ continue
173
+
174
+ # Sort the files by date
175
+ try:
176
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
177
+ except dateutil.parser._parser.ParserError:
178
+ files = [files[-1]]
179
+
180
+ for file in files:
181
+ model_result_filepaths.append(os.path.join(root, file))
182
+
183
+ eval_results = {}
184
+ for model_result_filepath in model_result_filepaths:
185
+ # Creation of result
186
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
187
+ eval_result.update_with_request_file(requests_path)
188
+
189
+ # Store results of same eval together
190
+ eval_name = eval_result.eval_name
191
+ if eval_name in eval_results.keys():
192
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
193
+ else:
194
+ eval_results[eval_name] = eval_result
195
+
196
+ results = []
197
+ for v in eval_results.values():
198
+ try:
199
+ v.to_dict() # we test if the dict version is complete
200
+ results.append(v)
201
+ except KeyError: # not all eval values present
202
+ continue
203
+
204
+ return results
src/populate.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
+ from src.leaderboard.read_evals import get_raw_eval_results
9
+
10
+
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
+ raw_data = get_raw_eval_results(results_path, requests_path)
13
+ all_data_json = [v.to_dict() for v in raw_data]
14
+ df = pd.DataFrame.from_records(all_data_json)
15
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
16
+ df = df[cols].round(decimals=2)
17
+
18
+ # filter out if any of the benchmarks have not been produced
19
+ df = df[has_no_nan_values(df, benchmark_cols)]
20
+ return raw_data, df
21
+
22
+
23
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
24
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
25
+ all_evals = []
26
+
27
+ for entry in entries:
28
+ if ".json" in entry:
29
+ file_path = os.path.join(save_path, entry)
30
+ with open(file_path) as fp:
31
+ data = json.load(fp)
32
+
33
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
34
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
35
+
36
+ all_evals.append(data)
37
+ elif ".md" not in entry:
38
+ # this is a folder
39
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
40
+ for sub_entry in sub_entries:
41
+ file_path = os.path.join(save_path, entry, sub_entry)
42
+ with open(file_path) as fp:
43
+ data = json.load(fp)
44
+
45
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
46
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
47
+ all_evals.append(data)
48
+
49
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
50
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
51
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
52
+ df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
53
+ df_running = pd.DataFrame.from_records(running_list, columns=cols)
54
+ df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
55
+ return df_finished[cols], df_running[cols], df_pending[cols]
src/submission/check_validity.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
11
+ from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config
12
+
13
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
14
+ """Checks if the model card and license exist and have been filled"""
15
+ try:
16
+ card = ModelCard.load(repo_id)
17
+ except huggingface_hub.utils.EntryNotFoundError:
18
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
+
20
+ # Enforce license metadata
21
+ if card.data.license is None:
22
+ if not ("license_name" in card.data and "license_link" in card.data):
23
+ return False, (
24
+ "License not found. Please add a license to your model card using the `license` metadata or a"
25
+ " `license_name`/`license_link` pair."
26
+ )
27
+
28
+ # Enforce card content
29
+ if len(card.text) < 200:
30
+ return False, "Please add a description to your model card, it is too short."
31
+
32
+ return True, ""
33
+
34
+
35
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
36
+ """Makes sure the model is on the hub, and uses a valid configuration (in the latest transformers version)"""
37
+ try:
38
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
39
+ if test_tokenizer:
40
+ tokenizer_config = get_tokenizer_config(model_name)
41
+ if tokenizer_config is not None:
42
+ tokenizer_class_candidate = tokenizer_config.get("tokenizer_class", None)
43
+ else:
44
+ tokenizer_class_candidate = config.tokenizer_class
45
+
46
+
47
+ tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate)
48
+ if tokenizer_class is None:
49
+ return (
50
+ False,
51
+ f"uses {tokenizer_class_candidate}, which is not in a transformers release, therefore not supported at the moment.",
52
+ None
53
+ )
54
+ return True, None, config
55
+
56
+ except ValueError:
57
+ return (
58
+ False,
59
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
60
+ None
61
+ )
62
+
63
+ except Exception as e:
64
+ return False, "was not found on hub!", None
65
+
66
+
67
+ def get_model_size(model_info: ModelInfo, precision: str):
68
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
69
+ try:
70
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
71
+ except (AttributeError, TypeError):
72
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
73
+
74
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
75
+ model_size = size_factor * model_size
76
+ return model_size
77
+
78
+ def get_model_arch(model_info: ModelInfo):
79
+ """Gets the model architecture from the configuration"""
80
+ return model_info.config.get("architectures", "Unknown")
81
+
82
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
83
+ depth = 1
84
+ file_names = []
85
+ users_to_submission_dates = defaultdict(list)
86
+
87
+ for root, _, files in os.walk(requested_models_dir):
88
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
89
+ if current_depth == depth:
90
+ for file in files:
91
+ if not file.endswith(".json"):
92
+ continue
93
+ with open(os.path.join(root, file), "r") as f:
94
+ info = json.load(f)
95
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
96
+
97
+ # Select organisation
98
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
99
+ continue
100
+ organisation, _ = info["model"].split("/")
101
+ users_to_submission_dates[organisation].append(info["submitted_time"])
102
+
103
+ return set(file_names), users_to_submission_dates
src/submission/submit.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datetime import datetime, timezone
4
+
5
+ from src.display.formatting import styled_error, styled_message, styled_warning
6
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
+ from src.submission.check_validity import (
8
+ already_submitted_models,
9
+ check_model_card,
10
+ get_model_size,
11
+ is_model_on_hub,
12
+ )
13
+
14
+ REQUESTED_MODELS = None
15
+ USERS_TO_SUBMISSION_DATES = None
16
+
17
+ def add_new_eval(
18
+ model: str,
19
+ base_model: str,
20
+ revision: str,
21
+ precision: str,
22
+ weight_type: str,
23
+ model_type: str,
24
+ ):
25
+ global REQUESTED_MODELS
26
+ global USERS_TO_SUBMISSION_DATES
27
+ if not REQUESTED_MODELS:
28
+ REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
+
30
+ user_name = ""
31
+ model_path = model
32
+ if "/" in model:
33
+ user_name = model.split("/")[0]
34
+ model_path = model.split("/")[1]
35
+
36
+ precision = precision.split(" ")[0]
37
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
+
39
+ if model_type is None or model_type == "":
40
+ return styled_error("Please select a model type.")
41
+
42
+ # Does the model actually exist?
43
+ if revision == "":
44
+ revision = "main"
45
+
46
+ # Is the model on the hub?
47
+ if weight_type in ["Delta", "Adapter"]:
48
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
+ if not base_model_on_hub:
50
+ return styled_error(f'Base model "{base_model}" {error}')
51
+
52
+ if not weight_type == "Adapter":
53
+ model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
54
+ if not model_on_hub:
55
+ return styled_error(f'Model "{model}" {error}')
56
+
57
+ # Is the model info correctly filled?
58
+ try:
59
+ model_info = API.model_info(repo_id=model, revision=revision)
60
+ except Exception:
61
+ return styled_error("Could not get your model information. Please fill it up properly.")
62
+
63
+ model_size = get_model_size(model_info=model_info, precision=precision)
64
+
65
+ # Were the model card and license filled?
66
+ try:
67
+ license = model_info.cardData["license"]
68
+ except Exception:
69
+ return styled_error("Please select a license for your model")
70
+
71
+ modelcard_OK, error_msg = check_model_card(model)
72
+ if not modelcard_OK:
73
+ return styled_error(error_msg)
74
+
75
+ # Seems good, creating the eval
76
+ print("Adding new eval")
77
+
78
+ eval_entry = {
79
+ "model": model,
80
+ "base_model": base_model,
81
+ "revision": revision,
82
+ "precision": precision,
83
+ "weight_type": weight_type,
84
+ "status": "PENDING",
85
+ "submitted_time": current_time,
86
+ "model_type": model_type,
87
+ "likes": model_info.likes,
88
+ "params": model_size,
89
+ "license": license,
90
+ }
91
+
92
+ # Check for duplicate submission
93
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
94
+ return styled_warning("This model has been already submitted.")
95
+
96
+ print("Creating eval file")
97
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
98
+ os.makedirs(OUT_DIR, exist_ok=True)
99
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
100
+
101
+ with open(out_path, "w") as f:
102
+ f.write(json.dumps(eval_entry))
103
+
104
+ print("Uploading eval file")
105
+ API.upload_file(
106
+ path_or_fileobj=out_path,
107
+ path_in_repo=out_path.split("eval-queue/")[1],
108
+ repo_id=QUEUE_REPO,
109
+ repo_type="dataset",
110
+ commit_message=f"Add {model} to eval queue",
111
+ )
112
+
113
+ # Remove the local file
114
+ os.remove(out_path)
115
+
116
+ return styled_message(
117
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
118
+ )