Spaces:
Runtime error
Runtime error
import asyncio | |
import json | |
import os | |
from contextlib import asynccontextmanager | |
from typing import Any, Dict, Sequence | |
from pydantic import BaseModel | |
from ..chat import ChatModel | |
from ..data import Role as DataRole | |
from ..extras.misc import torch_gc | |
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available | |
from .protocol import ( | |
ChatCompletionMessage, | |
ChatCompletionRequest, | |
ChatCompletionResponse, | |
ChatCompletionResponseChoice, | |
ChatCompletionResponseStreamChoice, | |
ChatCompletionResponseUsage, | |
ChatCompletionStreamResponse, | |
Finish, | |
Function, | |
FunctionCall, | |
ModelCard, | |
ModelList, | |
Role, | |
ScoreEvaluationRequest, | |
ScoreEvaluationResponse, | |
) | |
if is_fastapi_availble(): | |
from fastapi import FastAPI, HTTPException, status | |
from fastapi.middleware.cors import CORSMiddleware | |
if is_starlette_available(): | |
from sse_starlette import EventSourceResponse | |
if is_uvicorn_available(): | |
import uvicorn | |
async def lifespan(app: "FastAPI"): # collects GPU memory | |
yield | |
torch_gc() | |
def dictify(data: "BaseModel") -> Dict[str, Any]: | |
try: # pydantic v2 | |
return data.model_dump(exclude_unset=True) | |
except AttributeError: # pydantic v1 | |
return data.dict(exclude_unset=True) | |
def jsonify(data: "BaseModel") -> str: | |
try: # pydantic v2 | |
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False) | |
except AttributeError: # pydantic v1 | |
return data.json(exclude_unset=True, ensure_ascii=False) | |
def create_app(chat_model: "ChatModel") -> "FastAPI": | |
app = FastAPI(lifespan=lifespan) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1))) | |
async def list_models(): | |
model_card = ModelCard(id="gpt-3.5-turbo") | |
return ModelList(data=[model_card]) | |
async def create_chat_completion(request: ChatCompletionRequest): | |
if not chat_model.can_generate: | |
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") | |
if len(request.messages) == 0 or request.messages[-1].role not in [Role.USER, Role.TOOL]: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length") | |
messages = [dictify(message) for message in request.messages] | |
if len(messages) and messages[0]["role"] == Role.SYSTEM: | |
system = messages.pop(0)["content"] | |
else: | |
system = None | |
if len(messages) % 2 == 0: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") | |
for i in range(len(messages)): | |
if i % 2 == 0 and messages[i]["role"] not in [Role.USER, Role.TOOL]: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") | |
elif i % 2 == 1 and messages[i]["role"] not in [Role.ASSISTANT, Role.FUNCTION]: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") | |
elif messages[i]["role"] == Role.TOOL: | |
messages[i]["role"] = DataRole.OBSERVATION | |
tool_list = request.tools | |
if len(tool_list): | |
try: | |
tools = json.dumps([tool_list[0]["function"]], ensure_ascii=False) | |
except Exception: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools") | |
else: | |
tools = "" | |
async with semaphore: | |
loop = asyncio.get_running_loop() | |
return await loop.run_in_executor(None, chat_completion, messages, system, tools, request) | |
def chat_completion(messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest): | |
if request.stream: | |
generate = stream_chat_completion(messages, system, tools, request) | |
return EventSourceResponse(generate, media_type="text/event-stream") | |
responses = chat_model.chat( | |
messages, | |
system, | |
tools, | |
do_sample=request.do_sample, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
max_new_tokens=request.max_tokens, | |
num_return_sequences=request.n, | |
) | |
prompt_length, response_length = 0, 0 | |
choices = [] | |
for i, response in enumerate(responses): | |
if tools: | |
result = chat_model.template.format_tools.extract(response.response_text) | |
else: | |
result = response.response_text | |
if isinstance(result, tuple): | |
name, arguments = result | |
function = Function(name=name, arguments=arguments) | |
response_message = ChatCompletionMessage( | |
role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)] | |
) | |
finish_reason = Finish.TOOL | |
else: | |
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result) | |
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH | |
choices.append( | |
ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason) | |
) | |
prompt_length = response.prompt_length | |
response_length += response.response_length | |
usage = ChatCompletionResponseUsage( | |
prompt_tokens=prompt_length, | |
completion_tokens=response_length, | |
total_tokens=prompt_length + response_length, | |
) | |
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage) | |
def stream_chat_completion( | |
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest | |
): | |
choice_data = ChatCompletionResponseStreamChoice( | |
index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None | |
) | |
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) | |
yield jsonify(chunk) | |
for new_text in chat_model.stream_chat( | |
messages, | |
system, | |
tools, | |
do_sample=request.do_sample, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
max_new_tokens=request.max_tokens, | |
): | |
if len(new_text) == 0: | |
continue | |
choice_data = ChatCompletionResponseStreamChoice( | |
index=0, delta=ChatCompletionMessage(content=new_text), finish_reason=None | |
) | |
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) | |
yield jsonify(chunk) | |
choice_data = ChatCompletionResponseStreamChoice( | |
index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP | |
) | |
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) | |
yield jsonify(chunk) | |
yield "[DONE]" | |
async def create_score_evaluation(request: ScoreEvaluationRequest): | |
if chat_model.can_generate: | |
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") | |
if len(request.messages) == 0: | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") | |
async with semaphore: | |
loop = asyncio.get_running_loop() | |
return await loop.run_in_executor(None, get_score, request) | |
def get_score(request: ScoreEvaluationRequest): | |
scores = chat_model.get_scores(request.messages, max_length=request.max_length) | |
return ScoreEvaluationResponse(model=request.model, scores=scores) | |
return app | |
if __name__ == "__main__": | |
chat_model = ChatModel() | |
app = create_app(chat_model) | |
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1) | |