Spaces:
Runtime error
Runtime error
from functools import partial | |
from itertools import chain | |
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple | |
from ..extras.constants import IGNORE_INDEX | |
from ..extras.logging import get_logger | |
from .utils import Role | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments | |
from transformers.tokenization_utils import PreTrainedTokenizer | |
from ..hparams import DataArguments | |
from .template import Template | |
logger = get_logger(__name__) | |
def preprocess_pretrain_dataset( | |
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments" | |
) -> Dict[str, List[List[int]]]: | |
# build grouped texts with format `X1 X2 X3 ...` | |
text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))] | |
tokenized_examples = tokenizer(text_examples, add_special_tokens=False) | |
for i in range(len(tokenized_examples["input_ids"])): | |
tokenized_examples["input_ids"][i] += [tokenizer.eos_token_id] | |
tokenized_examples["attention_mask"][i] += [1] | |
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()} | |
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]]) | |
block_size = data_args.cutoff_len | |
# we drop the small remainder, and if the total_length < block_size, we exclude this batch | |
total_length = (total_length // block_size) * block_size | |
# split by chunks of cutoff_len | |
result = { | |
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] | |
for k, t in concatenated_examples.items() | |
} | |
return result | |
def preprocess_supervised_dataset( | |
examples: Dict[str, List[Any]], | |
tokenizer: "PreTrainedTokenizer", | |
template: "Template", | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>` | |
# for multiturn examples, we only mask the prompt part in each prompt-response pair. | |
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: | |
continue | |
messages = examples["prompt"][i] + examples["response"][i] | |
input_ids, labels = [], [] | |
for turn_idx, (source_ids, target_ids) in enumerate( | |
template.encode_multiturn( | |
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len | |
) | |
): | |
if data_args.train_on_prompt: | |
source_mask = source_ids | |
elif turn_idx != 0 and template.efficient_eos: | |
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) | |
else: | |
source_mask = [IGNORE_INDEX] * len(source_ids) | |
input_ids += source_ids + target_ids | |
labels += source_mask + target_ids | |
if template.efficient_eos: | |
input_ids += [tokenizer.eos_token_id] | |
labels += [tokenizer.eos_token_id] | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
return model_inputs | |
def preprocess_packed_supervised_dataset( | |
examples: Dict[str, List[Any]], | |
tokenizer: "PreTrainedTokenizer", | |
template: "Template", | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>` | |
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>` | |
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
input_ids, labels = [], [] | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: | |
continue | |
messages = examples["prompt"][i] + examples["response"][i] | |
for turn_idx, (source_ids, target_ids) in enumerate( | |
template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i]) | |
): | |
if data_args.train_on_prompt: | |
source_mask = source_ids | |
elif turn_idx != 0 and template.efficient_eos: | |
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) | |
else: | |
source_mask = [IGNORE_INDEX] * len(source_ids) | |
input_ids += source_ids + target_ids | |
labels += source_mask + target_ids | |
if template.efficient_eos: | |
input_ids += [tokenizer.eos_token_id] | |
labels += [tokenizer.eos_token_id] | |
total_length = len(input_ids) | |
block_size = data_args.cutoff_len | |
# we drop the small remainder, and if the total_length < block_size, we exclude this batch | |
total_length = (total_length // block_size) * block_size | |
# split by chunks of cutoff_len | |
for i in range(0, total_length, block_size): | |
model_inputs["input_ids"].append(input_ids[i : i + block_size]) | |
model_inputs["attention_mask"].append([1] * block_size) | |
model_inputs["labels"].append(labels[i : i + block_size]) | |
return model_inputs | |
def preprocess_unsupervised_dataset( | |
examples: Dict[str, List[Any]], | |
tokenizer: "PreTrainedTokenizer", | |
template: "Template", | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build inputs with format `<bos> X` and labels with format `Y <eos>` | |
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1: | |
continue | |
if len(examples["response"][i]) == 1: | |
messages = examples["prompt"][i] + examples["response"][i] | |
else: | |
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT, "content": ""}] | |
input_ids, labels = template.encode_oneturn( | |
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len | |
) | |
if template.efficient_eos: | |
labels += [tokenizer.eos_token_id] | |
model_inputs["input_ids"].append(input_ids) | |
model_inputs["attention_mask"].append([1] * len(input_ids)) | |
model_inputs["labels"].append(labels) | |
return model_inputs | |
def preprocess_pairwise_dataset( | |
examples: Dict[str, List[Any]], | |
tokenizer: "PreTrainedTokenizer", | |
template: "Template", | |
data_args: "DataArguments", | |
) -> Dict[str, List[List[int]]]: | |
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>` | |
model_inputs = {"prompt_ids": [], "chosen_ids": [], "rejected_ids": []} | |
for i in range(len(examples["prompt"])): | |
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: | |
continue | |
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]] | |
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]] | |
prompt_ids, chosen_ids = template.encode_oneturn( | |
tokenizer, chosen_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len | |
) | |
_, rejected_ids = template.encode_oneturn( | |
tokenizer, rejected_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len | |
) | |
if template.efficient_eos: | |
chosen_ids += [tokenizer.eos_token_id] | |
rejected_ids += [tokenizer.eos_token_id] | |
model_inputs["prompt_ids"].append(prompt_ids) | |
model_inputs["chosen_ids"].append(chosen_ids) | |
model_inputs["rejected_ids"].append(rejected_ids) | |
return model_inputs | |
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
print("input_ids:\n{}".format(example["input_ids"])) | |
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |
print("label_ids:\n{}".format(example["labels"])) | |
print( | |
"labels:\n{}".format( | |
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False) | |
) | |
) | |
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
print("prompt_ids:\n{}".format(example["prompt_ids"])) | |
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False))) | |
print("chosen_ids:\n{}".format(example["chosen_ids"])) | |
print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False))) | |
print("rejected_ids:\n{}".format(example["rejected_ids"])) | |
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False))) | |
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: | |
print("input_ids:\n{}".format(example["input_ids"])) | |
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) | |
def get_preprocess_and_print_func( | |
tokenizer: "PreTrainedTokenizer", | |
template: "Template", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
stage: Literal["pt", "sft", "rm", "ppo"], | |
) -> Tuple[Callable, Callable]: | |
if stage == "pt": | |
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args) | |
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer) | |
elif stage == "sft" and not training_args.predict_with_generate: | |
if data_args.sft_packing: | |
preprocess_func = partial( | |
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args | |
) | |
else: | |
preprocess_func = partial( | |
preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args | |
) | |
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer) | |
elif stage == "rm": | |
preprocess_func = partial( | |
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args | |
) | |
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer) | |
else: | |
preprocess_func = partial( | |
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args | |
) | |
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer) | |
return preprocess_func, print_function | |