Spaces:
Runtime error
Runtime error
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py | |
from typing import TYPE_CHECKING, List, Optional | |
from transformers import Seq2SeqTrainingArguments | |
from ...data import get_dataset, split_dataset | |
from ...extras.constants import IGNORE_INDEX | |
from ...extras.ploting import plot_loss | |
from ...hparams import ModelArguments | |
from ...model import load_model_and_tokenizer | |
from ...train.dpo.collator import DPODataCollatorWithPadding | |
from ...train.dpo.trainer import CustomDPOTrainer | |
from ...train.utils import create_modelcard_and_push, create_ref_model | |
if TYPE_CHECKING: | |
from transformers import TrainerCallback | |
from ...hparams import DataArguments, FinetuningArguments | |
def run_dpo( | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
callbacks: Optional[List["TrainerCallback"]] = None, | |
): | |
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train) | |
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm") | |
data_collator = DPODataCollatorWithPadding( | |
tokenizer=tokenizer, | |
pad_to_multiple_of=8, | |
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, | |
) | |
# Create reference model | |
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself | |
ref_model = model | |
else: | |
ref_model = create_ref_model(model_args, finetuning_args) | |
# Update arguments | |
training_args_dict = training_args.to_dict() | |
training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset | |
training_args = Seq2SeqTrainingArguments(**training_args_dict) | |
# Initialize our Trainer | |
trainer = CustomDPOTrainer( | |
beta=finetuning_args.dpo_beta, | |
loss_type=finetuning_args.dpo_loss, | |
ftx_gamma=finetuning_args.dpo_ftx, | |
model=model, | |
ref_model=ref_model, | |
args=training_args, | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
callbacks=callbacks, | |
**split_dataset(dataset, data_args, training_args), | |
) | |
# Training | |
if training_args.do_train: | |
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | |
trainer.save_model() | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
if trainer.is_world_process_zero() and finetuning_args.plot_loss: | |
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate(metric_key_prefix="eval") | |
if id(model) == id(ref_model): # unable to compute rewards without a reference model | |
remove_keys = [key for key in metrics.keys() if "rewards" in key] | |
for key in remove_keys: | |
metrics.pop(key) | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Create model card | |
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) | |