Spaces:
Runtime error
Runtime error
import math | |
import os | |
import sys | |
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple | |
import torch | |
from tqdm import tqdm | |
from transformers import GenerationConfig, Trainer, TrainerControl, TrainerState | |
from transformers.trainer_pt_utils import remove_dummy_checkpoint | |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR | |
from transformers.utils import SAFE_WEIGHTS_NAME, WEIGHTS_NAME | |
from trl import PPOTrainer | |
from trl.core import PPODecorators, logprobs_from_logits | |
from ...extras.callbacks import FixValueHeadModelCallback, LogCallback | |
from ...extras.logging import get_logger | |
from ...extras.misc import AverageMeter, count_parameters, get_logits_processor | |
from .utils import dump_layernorm, get_rewards_from_server, replace_model, restore_layernorm | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, TrainerCallback | |
from trl import AutoModelForCausalLMWithValueHead | |
from ...hparams import FinetuningArguments, GeneratingArguments, ModelArguments | |
logger = get_logger(__name__) | |
class CustomPPOTrainer(PPOTrainer, Trainer): | |
r""" | |
Inherits PPOTrainer. | |
""" | |
def __init__( | |
self, | |
model_args: "ModelArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
generating_args: "GeneratingArguments", | |
callbacks: List["TrainerCallback"], | |
reward_model: "AutoModelForCausalLMWithValueHead", | |
**kwargs, | |
): | |
PPOTrainer.__init__(self, **kwargs) | |
self.args = training_args | |
self.model_args = model_args | |
self.finetuning_args = finetuning_args | |
self.reward_model = reward_model | |
self.generation_config = GenerationConfig( | |
pad_token_id=self.tokenizer.pad_token_id, | |
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids, | |
**generating_args.to_dict(), | |
) | |
self.state = TrainerState() | |
self.control = TrainerControl() | |
self.is_deepspeed_enabled = self.accelerator.distributed_type == "DEEPSPEED" and hasattr( | |
self.accelerator.state, "deepspeed_plugin" | |
) | |
self.log_callback, self.save_callback = callbacks[0], callbacks[1] | |
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback) | |
if self.args.max_steps > 0: | |
logger.info("max_steps is given, it will override any value given in num_train_epochs") | |
if finetuning_args.reward_model_type == "full": | |
if self.is_deepspeed_enabled: | |
if not ( | |
getattr(reward_model.pretrained_model, "is_loaded_in_8bit", False) | |
or getattr(reward_model.pretrained_model, "is_loaded_in_4bit", False) | |
): # quantized models are already set on the correct device | |
self.reward_model = self._prepare_deepspeed(self.reward_model) | |
else: | |
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True) | |
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None: | |
r""" | |
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer. | |
""" | |
if resume_from_checkpoint is not None: | |
raise ValueError("`resume_from_checkpoint` will be supported in the future version.") | |
total_train_batch_size = ( | |
self.args.per_device_train_batch_size | |
* self.args.gradient_accumulation_steps | |
* self.finetuning_args.ppo_buffer_size | |
* self.args.world_size | |
) | |
if self.args.max_steps > 0: | |
num_examples = total_train_batch_size * self.args.max_steps | |
num_train_epochs = sys.maxsize | |
max_steps = self.args.max_steps | |
steps_in_epoch = self.args.max_steps | |
else: | |
len_dataloader = len(self.dataloader) | |
num_examples = len(self.dataset) | |
num_train_epochs = self.args.num_train_epochs | |
max_steps = math.ceil(num_train_epochs * len_dataloader) | |
steps_in_epoch = len_dataloader | |
self.state.max_steps = max_steps | |
self.state.num_train_epochs = num_train_epochs | |
self.state.is_local_process_zero = self.is_local_process_zero() | |
self.state.is_world_process_zero = self.is_world_process_zero() | |
if self.is_world_process_zero(): | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = {}".format(num_examples)) | |
logger.info(" Num Epochs = {}".format(num_train_epochs)) | |
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size)) | |
logger.info( | |
" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format( | |
total_train_batch_size | |
) | |
) | |
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps)) | |
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs)) | |
logger.info(" Total training steps = {}".format(max_steps)) | |
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0])) | |
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) | |
dataiter = iter(self.dataloader) | |
loss_meter = AverageMeter() | |
reward_meter = AverageMeter() | |
self.log_callback.on_train_begin(self.args, self.state, self.control) | |
for step in tqdm(range(max_steps), disable=not self.is_local_process_zero()): | |
try: | |
batch = next(dataiter) | |
except StopIteration: | |
dataiter = iter(self.dataloader) | |
batch = next(dataiter) | |
# Cast to inference mode | |
unwrapped_model.gradient_checkpointing_disable() | |
unwrapped_model.config.use_cache = True | |
self.model.eval() | |
# Get inputs | |
self.tokenizer.padding_side = "right" # change padding side | |
queries, responses, rewards = [], [], [] | |
for idx in range(0, self.config.batch_size, self.config.mini_batch_size): | |
mini_batch_queries, mini_batch_responses = self.get_inputs( | |
batch[idx : idx + self.config.mini_batch_size] | |
) | |
mini_batch_rewards = self.get_rewards(mini_batch_queries, mini_batch_responses, unwrapped_model) | |
queries.extend(mini_batch_queries) | |
responses.extend(mini_batch_responses) | |
rewards.extend(mini_batch_rewards) | |
# Cast to training mode | |
unwrapped_model.gradient_checkpointing_enable() | |
unwrapped_model.config.use_cache = False | |
self.model.train() | |
# Run PPO step | |
stats = self.step(queries, responses, rewards) | |
self.tokenizer.padding_side = "left" # restore padding side | |
loss_meter.update(float(stats["ppo/loss/total"]), n=len(rewards)) | |
reward_meter.update(torch.stack(rewards).mean().item(), n=len(rewards)) | |
if self.config.log_with is not None: | |
try: | |
batch["query"] = self.tokenizer.batch_decode(queries, skip_special_tokens=True) | |
batch["response"] = self.tokenizer.batch_decode(responses, skip_special_tokens=True) | |
self.log_stats(stats, batch, rewards) | |
except Exception: | |
logger.warning("Failed to save stats due to unknown errors.") | |
self.state.global_step += 1 | |
self.log_callback.on_step_end(self.args, self.state, self.control) | |
if self.is_local_process_zero() and (step + 1) % self.args.logging_steps == 0: | |
logs = dict( | |
loss=round(loss_meter.avg, 4), | |
reward=round(reward_meter.avg, 4), | |
learning_rate=stats["ppo/learning_rate"], | |
epoch=round(step / steps_in_epoch, 2), | |
) | |
tqdm.write(str(logs)) | |
logs["step"] = step | |
self.state.log_history.append(logs) | |
self.log_callback.on_log(self.args, self.state, self.control) | |
loss_meter.reset() | |
reward_meter.reset() | |
if (step + 1) % self.args.save_steps == 0: # save checkpoint | |
self.save_model( | |
os.path.join(self.args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, self.state.global_step)) | |
) | |
self.save_callback.on_save( | |
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model) | |
) | |
if self.control.should_epoch_stop or self.control.should_training_stop: | |
break | |
self.log_callback.on_train_end(self.args, self.state, self.control) | |
self.save_callback.on_train_end( | |
self.args, self.state, self.control, model=self.accelerator.unwrap_model(self.model) | |
) | |
def get_inputs(self, batch: Dict[str, torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: | |
r""" | |
Generates model's responses given queries. | |
""" | |
if self.model_args.upcast_layernorm: | |
layernorm_params = dump_layernorm(self.model) | |
if batch["input_ids"].size(0) == 1: # handle llama2 ppo with gradient accumulation > 1 | |
start_index = (batch["input_ids"][0] != self.tokenizer.pad_token_id).nonzero()[0].item() | |
for k, v in batch.items(): | |
batch[k] = v[:, start_index:] | |
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) | |
generate_output: torch.Tensor = unwrapped_model.generate( | |
generation_config=self.generation_config, logits_processor=get_logits_processor(), **batch | |
) | |
if self.model_args.upcast_layernorm: | |
restore_layernorm(self.model, layernorm_params) | |
query = batch["input_ids"].detach().cpu() | |
response = generate_output[:, batch["input_ids"].size(-1) :].detach().cpu() | |
queries, responses = [], [] | |
for i in range(len(query)): | |
query_start_index = (query[i] != self.tokenizer.pad_token_id).nonzero()[0].item() | |
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero() | |
if len(response_index) == 0: | |
response_length = 1 # allow empty response | |
else: | |
response_length = response_index[-1].item() + 1 | |
queries.append(query[i, query_start_index:]) # remove padding from left | |
responses.append(response[i, :response_length]) # remove padding from right | |
return queries, responses | |
def get_rewards( | |
self, | |
queries: List[torch.Tensor], | |
responses: List[torch.Tensor], | |
unwrapped_model: "AutoModelForCausalLMWithValueHead", | |
) -> List[torch.Tensor]: | |
r""" | |
Computes scores using given reward model. | |
Both inputs and outputs are put on CPU. | |
""" | |
if self.finetuning_args.reward_model_type == "api": | |
token_ids = [torch.cat((q, r), dim=-1).tolist() for q, r in zip(queries, responses)] | |
messages = self.tokenizer.batch_decode(token_ids, skip_special_tokens=True) | |
return get_rewards_from_server(self.reward_model, messages) | |
if self.finetuning_args.reward_model_type == "lora": | |
replace_model(unwrapped_model, target="reward") | |
reward_model = self.model | |
else: | |
reward_model = self.reward_model | |
batch = self.prepare_model_inputs(queries, responses) | |
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16 | |
_, _, values = reward_model(**batch, output_hidden_states=True, return_dict=True) | |
if getattr(unwrapped_model.config, "model_type", None) == "chatglm": # assume same architecture | |
values = torch.transpose(values, 0, 1) | |
rewards = [] | |
for i in range(values.size(0)): | |
end_indexes = (batch["input_ids"][i] != self.tokenizer.pad_token_id).nonzero() | |
end_index = end_indexes[-1].item() if len(end_indexes) else 0 | |
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type | |
if self.finetuning_args.reward_model_type == "lora": | |
replace_model(unwrapped_model, target="default") | |
return rewards | |
def batched_forward_pass( | |
self, | |
model: "AutoModelForCausalLMWithValueHead", | |
queries: torch.Tensor, | |
responses: torch.Tensor, | |
model_inputs: dict, | |
return_logits: Optional[bool] = False, | |
response_masks: Optional[torch.Tensor] = None, | |
): | |
r""" | |
Calculates model outputs in multiple batches. | |
Subclass and override to inject custom behavior. | |
""" | |
bs = len(queries) | |
fbs = self.config.mini_batch_size | |
all_logprobs = [] | |
all_logits = [] | |
all_masks = [] | |
all_values = [] | |
for i in range(math.ceil(bs / fbs)): | |
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()} | |
query_batch = queries[i * fbs : (i + 1) * fbs] | |
response_batch = responses[i * fbs : (i + 1) * fbs] | |
if response_masks is not None: | |
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs] | |
input_ids = input_kwargs["input_ids"] | |
attention_mask = input_kwargs["attention_mask"] | |
with torch.cuda.amp.autocast(dtype=self.model_args.compute_dtype): # support bf16 | |
logits, _, values = model(**input_kwargs) | |
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) | |
if getattr(unwrapped_model.config, "model_type", None) == "chatglm": | |
values = torch.transpose(values, 0, 1) | |
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:]) | |
masks = torch.zeros_like(attention_mask) | |
masks[:, :-1] = attention_mask[:, 1:] | |
for j in range(len(query_batch)): | |
start = len(query_batch[j]) - 1 | |
if attention_mask[j, 0] == 0: # offset left padding | |
start += attention_mask[j, :].nonzero()[0].item() | |
end = start + len(response_batch[j]) | |
if response_masks is not None: | |
response_masks_batch = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:] | |
masks[j, :start] = 0 | |
masks[j, end:] = 0 | |
if response_masks is not None: | |
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end] | |
if return_logits: | |
all_logits.append(logits) | |
else: | |
del logits | |
all_values.append(values) | |
all_logprobs.append(logprobs) | |
all_masks.append(masks) | |
return ( | |
torch.cat(all_logprobs), | |
torch.cat(all_logits)[:, :-1] if return_logits else None, | |
torch.cat(all_values)[:, :-1], | |
torch.cat(all_masks)[:, :-1], | |
) | |
def save_model(self, output_dir: Optional[str] = None) -> None: | |
r""" | |
Saves model checkpoint. | |
Subclass and override to inject custom behavior. | |
""" | |
if self.args.should_save: | |
try: | |
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model)) | |
except ValueError: | |
logger.warning( | |
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead," | |
" use zero_to_fp32.py to recover weights" | |
) | |
self._save(output_dir, state_dict={}) | |
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME]) | |
self.model.save_checkpoint(output_dir) | |