from dataclasses import asdict, dataclass, field from typing import Any, Dict, Literal, Optional @dataclass class ModelArguments: r""" Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ model_name_or_path: str = field( metadata={"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."} ) adapter_name_or_path: Optional[str] = field( default=None, metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}, ) use_fast_tokenizer: Optional[bool] = field( default=False, metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}, ) resize_vocab: Optional[bool] = field( default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."} ) split_special_tokens: Optional[bool] = field( default=False, metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}, ) model_revision: Optional[str] = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the model."} ) quantization_type: Optional[Literal["fp4", "nf4"]] = field( default="nf4", metadata={"help": "Quantization data type to use in int4 training."} ) double_quantization: Optional[bool] = field( default=True, metadata={"help": "Whether or not to use double quantization in int4 training."} ) rope_scaling: Optional[Literal["linear", "dynamic"]] = field( default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."} ) flash_attn: Optional[bool] = field( default=False, metadata={"help": "Enable FlashAttention-2 for faster training."} ) shift_attn: Optional[bool] = field( default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."} ) use_unsloth: Optional[bool] = field( default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."} ) disable_gradient_checkpointing: Optional[bool] = field( default=False, metadata={"help": "Whether or not to disable gradient checkpointing."} ) upcast_layernorm: Optional[bool] = field( default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."} ) upcast_lmhead_output: Optional[bool] = field( default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."} ) hf_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."}) ms_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with ModelScope Hub."}) export_dir: Optional[str] = field( default=None, metadata={"help": "Path to the directory to save the exported model."} ) export_size: Optional[int] = field( default=1, metadata={"help": "The file shard size (in GB) of the exported model."} ) export_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the exported model."} ) export_quantization_dataset: Optional[str] = field( default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."} ) export_quantization_nsamples: Optional[int] = field( default=128, metadata={"help": "The number of samples used for quantization."} ) export_quantization_maxlen: Optional[int] = field( default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."} ) export_legacy_format: Optional[bool] = field( default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."} ) export_hub_model_id: Optional[str] = field( default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."} ) def __post_init__(self): self.compute_dtype = None self.model_max_length = None if self.split_special_tokens and self.use_fast_tokenizer: raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") if self.adapter_name_or_path is not None: # support merging multiple lora weights self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")] assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization." if self.export_quantization_bit is not None and self.export_quantization_dataset is None: raise ValueError("Quantization dataset is necessary for exporting.") def to_dict(self) -> Dict[str, Any]: return asdict(self)