import logging import os import sys from typing import Any, Dict, Optional, Tuple import datasets import torch import transformers from transformers import HfArgumentParser, Seq2SeqTrainingArguments from transformers.trainer_utils import get_last_checkpoint from ..extras.logging import get_logger from .data_args import DataArguments from .evaluation_args import EvaluationArguments from .finetuning_args import FinetuningArguments from .generating_args import GeneratingArguments from .model_args import ModelArguments logger = get_logger(__name__) _TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments] _TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments] _INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] _INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] _EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] _EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]: if args is not None: return parser.parse_dict(args) if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): return parser.parse_yaml_file(os.path.abspath(sys.argv[1])) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): return parser.parse_json_file(os.path.abspath(sys.argv[1])) (*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True) if unknown_args: print(parser.format_help()) print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args)) raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args)) return (*parsed_args,) def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None: datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None: if model_args.quantization_bit is not None: if finetuning_args.finetuning_type != "lora": raise ValueError("Quantization is only compatible with the LoRA method.") if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter: raise ValueError("Cannot create new adapter upon a quantized model.") if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1: if finetuning_args.finetuning_type != "lora": raise ValueError("Multiple adapters are only available for LoRA tuning.") if model_args.quantization_bit is not None: raise ValueError("Quantized model only accepts a single adapter. Merge them first.") def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: parser = HfArgumentParser(_TRAIN_ARGS) return _parse_args(parser, args) def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: parser = HfArgumentParser(_INFER_ARGS) return _parse_args(parser, args) def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: parser = HfArgumentParser(_EVAL_ARGS) return _parse_args(parser, args) def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args) # Setup logging if training_args.should_log: _set_transformers_logging() # Check arguments if finetuning_args.stage != "pt" and data_args.template is None: raise ValueError("Please specify which `template` to use.") if finetuning_args.stage != "sft" and training_args.predict_with_generate: raise ValueError("`predict_with_generate` cannot be set as True except SFT.") if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate: raise ValueError("Please enable `predict_with_generate` to save model predictions.") if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end: raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.") if finetuning_args.stage == "ppo" and not training_args.do_train: raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.") if finetuning_args.stage == "ppo" and model_args.shift_attn: raise ValueError("PPO training is incompatible with S^2-Attn.") if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth: raise ValueError("Unsloth does not support lora reward model.") if training_args.max_steps == -1 and data_args.streaming: raise ValueError("Please specify `max_steps` in streaming mode.") if training_args.do_train and training_args.predict_with_generate: raise ValueError("`predict_with_generate` cannot be set as True while training.") if training_args.do_train and finetuning_args.finetuning_type == "lora" and finetuning_args.lora_target is None: raise ValueError("Please specify `lora_target` in LoRA training.") _verify_model_args(model_args, finetuning_args) if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm): logger.warning("We recommend enable `upcast_layernorm` in quantized training.") if training_args.do_train and (not training_args.fp16) and (not training_args.bf16): logger.warning("We recommend enable mixed precision training.") if (not training_args.do_train) and model_args.quantization_bit is not None: logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.") if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None: logger.warning("Specify `ref_model` for computing rewards at evaluation.") # postprocess training_args if ( training_args.local_rank != -1 and training_args.ddp_find_unused_parameters is None and finetuning_args.finetuning_type == "lora" ): logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.") training_args_dict = training_args.to_dict() training_args_dict.update(dict(ddp_find_unused_parameters=False)) training_args = Seq2SeqTrainingArguments(**training_args_dict) if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]: can_resume_from_checkpoint = False training_args.resume_from_checkpoint = None else: can_resume_from_checkpoint = True if ( training_args.resume_from_checkpoint is None and training_args.do_train and os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir and can_resume_from_checkpoint ): last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.") if last_checkpoint is not None: training_args_dict = training_args.to_dict() training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint)) training_args = Seq2SeqTrainingArguments(**training_args_dict) logger.info( "Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format( training_args.resume_from_checkpoint ) ) if ( finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type == "lora" and training_args.resume_from_checkpoint is not None ): logger.warning( "Add {} to `adapter_name_or_path` to resume training from checkpoint.".format( training_args.resume_from_checkpoint ) ) # postprocess model_args model_args.compute_dtype = ( torch.bfloat16 if training_args.bf16 else (torch.float16 if training_args.fp16 else None) ) model_args.model_max_length = data_args.cutoff_len # Log on each process the small summary: logger.info( "Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format( training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), str(model_args.compute_dtype), ) ) logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. transformers.set_seed(training_args.seed) return model_args, data_args, training_args, finetuning_args, generating_args def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args) _set_transformers_logging() if data_args.template is None: raise ValueError("Please specify which `template` to use.") _verify_model_args(model_args, finetuning_args) return model_args, data_args, finetuning_args, generating_args def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args) _set_transformers_logging() if data_args.template is None: raise ValueError("Please specify which `template` to use.") _verify_model_args(model_args, finetuning_args) transformers.set_seed(eval_args.seed) return model_args, data_args, eval_args, finetuning_args