import hashlib from enum import Enum, unique from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union from ..extras.logging import get_logger if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import TrainingArguments from llmtuner.hparams import DataArguments logger = get_logger(__name__) @unique class Role(str, Enum): USER = "user" ASSISTANT = "assistant" OBSERVATION = "observation" FUNCTION = "function" def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None: if file_sha1 is None: logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.") return if len(data_files) != 1: logger.warning("Checksum failed: too many files.") return with open(data_files[0], "rb") as f: sha1 = hashlib.sha1(f.read()).hexdigest() if sha1 != file_sha1: logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0])) def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]: max_target_len = int(max_len * (target_len / (source_len + target_len))) max_target_len = max(max_target_len, reserved_label_len) max_source_len = max_len - max_target_len return max_source_len, max_target_len def split_dataset( dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments" ) -> Dict[str, "Dataset"]: if training_args.do_train: if data_args.val_size > 1e-6: # Split the dataset if data_args.streaming: val_set = dataset.take(int(data_args.val_size)) train_set = dataset.skip(int(data_args.val_size)) dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) return {"train_dataset": train_set, "eval_dataset": val_set} else: val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed) return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]} else: if data_args.streaming: dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) return {"train_dataset": dataset} else: # do_eval or do_predict return {"eval_dataset": dataset}