from dataclasses import dataclass, field from typing import Literal, Optional @dataclass class DataArguments: r""" Arguments pertaining to what data we are going to input our model for training and evaluation. """ template: Optional[str] = field( default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."} ) dataset: Optional[str] = field( default=None, metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}, ) dataset_dir: Optional[str] = field( default="data", metadata={"help": "Path to the folder containing the datasets."} ) split: Optional[str] = field( default="train", metadata={"help": "Which dataset split to use for training and evaluation."} ) cutoff_len: Optional[int] = field( default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."} ) reserved_label_len: Optional[int] = field( default=1, metadata={"help": "The maximum length reserved for label after tokenization."} ) train_on_prompt: Optional[bool] = field( default=False, metadata={"help": "Whether to disable the mask on the prompt or not."} ) streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."}) buffer_size: Optional[int] = field( default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."} ) mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field( default="concat", metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, ) interleave_probs: Optional[str] = field( default=None, metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, ) overwrite_cache: Optional[bool] = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets."} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."} ) max_samples: Optional[int] = field( default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."} ) eval_num_beams: Optional[int] = field( default=None, metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, ) ignore_pad_token_for_loss: Optional[bool] = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) val_size: Optional[float] = field( default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."} ) sft_packing: Optional[bool] = field( default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."} ) cache_path: Optional[str] = field( default=None, metadata={"help": "Path to save or load the preprocessed datasets."} ) def __post_init__(self): if self.reserved_label_len >= self.cutoff_len: raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.") if self.streaming and self.val_size > 1e-6 and self.val_size < 1: raise ValueError("Streaming mode should have an integer val size.") if self.streaming and self.max_samples is not None: raise ValueError("`max_samples` is incompatible with `streaming`.")