from collections import defaultdict from contextlib import nullcontext from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union import torch from transformers import BatchEncoding, Trainer from trl import DPOTrainer from trl.trainer.utils import disable_dropout_in_model from ...extras.constants import IGNORE_INDEX if TYPE_CHECKING: from transformers import PreTrainedModel class CustomDPOTrainer(DPOTrainer): def __init__( self, beta: float, loss_type: Literal["sigmoid", "hinge", "ipo", "kto"], ftx_gamma: float, model: Union["PreTrainedModel", torch.nn.Module], ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None, disable_dropout: Optional[bool] = True, **kwargs, ): if disable_dropout: disable_dropout_in_model(model) if ref_model is not None: disable_dropout_in_model(ref_model) self.use_dpo_data_collator = True # hack to avoid warning self.generate_during_eval = False # disable at evaluation self.label_pad_token_id = IGNORE_INDEX self.padding_value = 0 self.is_encoder_decoder = model.config.is_encoder_decoder self.precompute_ref_log_probs = False self._precomputed_train_ref_log_probs = False self._precomputed_eval_ref_log_probs = False self._peft_has_been_casted_to_bf16 = False self.ref_model = ref_model self.beta = beta self.label_smoothing = 0 self.loss_type = loss_type self.ftx_gamma = ftx_gamma self._stored_metrics = defaultdict(lambda: defaultdict(list)) Trainer.__init__(self, model=model, **kwargs) if not hasattr(self, "accelerator"): raise AttributeError("Please update `transformers`.") if ref_model is not None: if self.is_deepspeed_enabled: if not ( getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False) ): # quantized models are already set on the correct device self.ref_model = self._prepare_deepspeed(self.ref_model) else: self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor: r""" Computes supervised cross-entropy loss of given labels under the given logits. Returns: A tensor of shape (batch_size,) containing the cross-entropy loss of each samples. """ all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True) return -all_logps def concatenated_forward( self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor] ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error all_logits = model( input_ids=batch_copied["input_ids"], attention_mask=batch_copied["attention_mask"], return_dict=True ).logits.to(torch.float32) all_logps = self.get_batch_logps( all_logits, batch["labels"], average_log_prob=False, label_pad_token_id=self.label_pad_token_id, ) batch_size = batch["input_ids"].size(0) // 2 chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) return chosen_logps, rejected_logps, chosen_logits, rejected_logits def get_batch_loss_metrics( self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor], train_eval: Optional[Literal["train", "eval"]] = "train", ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: r""" Computes the DPO loss and other metrics for the given batch of inputs for train or test. """ metrics = {} ( policy_chosen_logps, policy_rejected_logps, policy_chosen_logits, policy_rejected_logits, ) = self.concatenated_forward(model, batch) with torch.no_grad(): if self.ref_model is None: ref_model = self.model ref_context = self.accelerator.unwrap_model(self.model).disable_adapter() else: ref_model = self.ref_model ref_context = nullcontext() with ref_context: ( reference_chosen_logps, reference_rejected_logps, _, _, ) = self.concatenated_forward(ref_model, batch) losses, chosen_rewards, rejected_rewards = self.dpo_loss( policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps, ) if self.ftx_gamma > 1e-6: batch_size = batch["input_ids"].size(0) // 2 chosen_labels, _ = batch["labels"].split(batch_size, dim=0) losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels) reward_accuracies = (chosen_rewards > rejected_rewards).float() prefix = "eval_" if train_eval == "eval" else "" metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean() metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean() metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean() metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean() metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean() metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean() metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean() metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean() return losses.mean(), metrics