from typing import TYPE_CHECKING, Optional, Union import torch from ..extras.logging import get_logger from ..hparams import FinetuningArguments, ModelArguments from ..model import get_modelcard_args, load_model_and_tokenizer, load_valuehead_params if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, Trainer from transformers.modeling_utils import PreTrainedModel from trl import AutoModelForCausalLMWithValueHead from ..hparams import DataArguments logger = get_logger(__name__) def create_modelcard_and_push( trainer: "Trainer", model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", ) -> None: if training_args.do_train: if training_args.push_to_hub: trainer.push_to_hub(**get_modelcard_args(model_args, data_args, finetuning_args)) return try: trainer.create_model_card(**get_modelcard_args(model_args, data_args, finetuning_args)) except Exception as err: logger.warning("Failed to create model card: {}".format(str(err))) def create_ref_model( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: Optional[bool] = False ) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]: r""" Creates reference model for PPO/DPO training. Evaluation mode is not supported. The valuehead parameter is randomly initialized since it is useless for PPO training. """ if finetuning_args.ref_model is not None: ref_model_args_dict = model_args.to_dict() ref_model_args_dict.update( dict( model_name_or_path=finetuning_args.ref_model, adapter_name_or_path=finetuning_args.ref_model_adapters, quantization_bit=finetuning_args.ref_model_quantization_bit, ) ) ref_model_args = ModelArguments(**ref_model_args_dict) ref_finetuning_args = FinetuningArguments(finetuning_type="lora") ref_model, _ = load_model_and_tokenizer( ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info("Created reference model from {}".format(finetuning_args.ref_model)) else: if finetuning_args.finetuning_type == "lora": ref_model = None else: ref_model, _ = load_model_and_tokenizer( model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead ) logger.info("Created reference model from the model itself.") return ref_model def create_reward_model( model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" ) -> "AutoModelForCausalLMWithValueHead": r""" Creates reward model for PPO training. """ if finetuning_args.reward_model_type == "api": assert finetuning_args.reward_model.startswith("http"), "Please provide full url." logger.info("Use reward server {}".format(finetuning_args.reward_model)) return finetuning_args.reward_model elif finetuning_args.reward_model_type == "lora": model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 if "default" in name: param.data = param.data.to(torch.float32) # trainable params should in fp32 vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) assert vhead_params is not None, "Reward model is not correctly loaded." model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) model.register_buffer( "default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False ) model.register_buffer( "default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False ) logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) return None else: reward_model_args_dict = model_args.to_dict() reward_model_args_dict.update( dict( model_name_or_path=finetuning_args.reward_model, adapter_name_or_path=finetuning_args.reward_model_adapters, quantization_bit=finetuning_args.reward_model_quantization_bit, ) ) reward_model_args = ModelArguments(**reward_model_args_dict) reward_finetuning_args = FinetuningArguments(finetuning_type="lora") reward_model, _ = load_model_and_tokenizer( reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True ) logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model)) logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") return reward_model