# Prediction interface for Cog ⚙️ # https://github.com/replicate/cog/blob/main/docs/python.md from cog import BasePredictor, Input, Path from typing import List from omni_zero import OmniZeroCouple from PIL import Image class Predictor(BasePredictor): def setup(self): """Load the model into memory to make running multiple predictions efficient""" self.omni_zero = OmniZeroCouple( base_model="frankjoshua/albedobaseXL_v13", ) def predict( self, base_image: Path = Input(description="Base image for the model", default=None), base_image_strength: float = Input(description="Base image strength for the model", default=0.2, ge=0.0, le=1.0), style_image: Path = Input(description="Style image for the model", default=None), style_image_strength: float = Input(description="Style image strength for the model", default=1.0, ge=0.0, le=1.0), identity_image_1: Path = Input(description="First identity image for the model", default=None), identity_image_strength_1: float = Input(description="First identity image strength for the model", default=1.0, ge=0.0, le=1.0), identity_image_2: Path = Input(description="Second identity image for the model", default=None), identity_image_strength_2: float = Input(description="Second identity image strength for the model", default=1.0, ge=0.0, le=1.0), seed: int = Input(description="Random seed for the model. Use -1 for random", default=-1), prompt: str = Input(description="Prompt for the model", default="Cinematic still photo of a couple. emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, sharp focus, high budget, cinemascope, moody, epic, gorgeous, film grain, grainy"), negative_prompt: str = Input(description="Negative prompt for the model", default="anime, cartoon, graphic, (blur, blurry, bokeh), text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"), guidance_scale: float = Input(description="Guidance scale for the model", default=3.0, ge=0.0, le=14.0), number_of_images: int = Input(description="Number of images to generate", default=1, ge=1, le=4), number_of_steps: int = Input(description="Number of steps for the model", default=10, ge=1, le=50), depth_image: Path = Input(description="Depth image for the model", default=None), depth_image_strength: float = Input(description="Depth image strength for the model", default=0.2, ge=0.0, le=1.0), mask_guidance_start: float = Input(description="Mask guidance start value", default=0.0, ge=0.0, le=1.0), mask_guidance_end: float = Input(description="Mask guidance end value", default=1.0, ge=0.0, le=1.0), ) -> List[Path]: """Run a single prediction on the model""" base_image = Image.open(base_image) if base_image else None style_image = Image.open(style_image) if style_image else None identity_image_1 = Image.open(identity_image_1) if identity_image_1 else None identity_image_2 = Image.open(identity_image_2) if identity_image_2 else None depth_image = Image.open(depth_image) if depth_image else None print("base_image", base_image) print("style_image", style_image) print("identity_image_1", identity_image_1) print("identity_image_2", identity_image_2) print("depth_image", depth_image) images = self.omni_zero.generate( seed=seed, prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, number_of_images=number_of_images, number_of_steps=number_of_steps, base_image=base_image, base_image_strength=base_image_strength, style_image=style_image, style_image_strength=style_image_strength, identity_image_1=identity_image_1, identity_image_strength_1=identity_image_strength_1, identity_image_2=identity_image_2, identity_image_strength_2=identity_image_strength_2, depth_image=depth_image, depth_image_strength=depth_image_strength, mask_guidance_start=mask_guidance_start, mask_guidance_end=mask_guidance_end, ) outputs = [] for i, image in enumerate(images): output_path = f"oz_output_{i}.jpg" image.save(output_path) outputs.append(Path(output_path)) return outputs