root commited on
Commit
84e25a6
1 Parent(s): 010e6f1
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Credit to Derek Thomas, derek@huggingface.co
3
+ """
4
+ import os
5
+ import logging
6
+ from pathlib import Path
7
+ from time import perf_counter
8
+
9
+ import gradio as gr
10
+ from jinja2 import Environment, FileSystemLoader
11
+
12
+ from backend.query_llm import generate_hf, generate_openai
13
+ from backend.semantic_search import retrieve, rerank
14
+
15
+
16
+ TOP_N = int(os.getenv("TOP_N", 12))
17
+ TOP_K = int(os.getenv("TOP_K", 4))
18
+
19
+ proj_dir = Path(__file__).parent
20
+ # Setting up the logging
21
+ logging.basicConfig(level=logging.INFO)
22
+ logger = logging.getLogger(__name__)
23
+
24
+ # Set up the template environment with the templates directory
25
+ env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
26
+
27
+ # Load the templates directly from the environment
28
+ template = env.get_template('template.j2')
29
+ template_html = env.get_template('template_html.j2')
30
+
31
+
32
+ def add_text(history, text):
33
+ history = [] if history is None else history
34
+ history = history + [(text, None)]
35
+ return history, gr.Textbox(value="", interactive=False)
36
+
37
+
38
+ def bot(history, api_kind):
39
+ query = history[-1][0]
40
+
41
+ if not query:
42
+ raise gr.Warning("Please submit a non-empty string as a prompt")
43
+
44
+ logger.info('Retrieving documents...')
45
+ # Retrieve documents relevant to query
46
+ document_start = perf_counter()
47
+
48
+ documents = retrieve(query, TOP_N)
49
+
50
+ document_time = perf_counter() - document_start
51
+ logger.info(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
52
+
53
+ logger.info('Reranking documents...')
54
+ # Retrieve documents relevant to query
55
+ document_start = perf_counter()
56
+
57
+ documents = rerank(query, documents, TOP_K)
58
+
59
+ document_time = perf_counter() - document_start
60
+ logger.info(f'Finished Reranking documents in {round(document_time, 2)} seconds...')
61
+
62
+ # Create Prompt
63
+ prompt = template.render(documents=documents, query=query)
64
+ prompt_html = template_html.render(documents=documents, query=query)
65
+
66
+ if api_kind == "HuggingFace":
67
+ generate_fn = generate_hf
68
+ elif api_kind == "OpenAI":
69
+ generate_fn = generate_openai
70
+ else:
71
+ raise gr.Error(f"API {api_kind} is not supported")
72
+
73
+ history[-1][1] = ""
74
+ for character in generate_fn(prompt, history[:-1]):
75
+ history[-1][1] = character
76
+ yield history, prompt_html
77
+
78
+
79
+ with gr.Blocks() as demo:
80
+ chatbot = gr.Chatbot(
81
+ [],
82
+ elem_id="chatbot",
83
+ avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
84
+ 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
85
+ bubble_full_width=False,
86
+ show_copy_button=True,
87
+ show_share_button=True,
88
+ )
89
+
90
+ with gr.Row():
91
+ txt = gr.Textbox(
92
+ scale=3,
93
+ show_label=False,
94
+ placeholder="Enter text and press enter",
95
+ container=False,
96
+ )
97
+ txt_btn = gr.Button(value="Submit text", scale=1)
98
+
99
+ api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace")
100
+
101
+ prompt_html = gr.HTML()
102
+ # Turn off interactivity while generating if you click
103
+ txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
104
+ bot, [chatbot, api_kind], [chatbot, prompt_html])
105
+
106
+ # Turn it back on
107
+ txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
108
+
109
+ # Turn off interactivity while generating if you hit enter
110
+ txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
111
+ bot, [chatbot, api_kind], [chatbot, prompt_html])
112
+
113
+ # Turn it back on
114
+ txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
115
+
116
+ demo.queue()
117
+ demo.launch(debug=True)
backend/__pycache__/query_llm.cpython-310.pyc ADDED
Binary file (4.03 kB). View file
 
backend/__pycache__/semantic_search.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
backend/query_llm.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import gradio as gr
3
+ import os
4
+
5
+ from typing import Any, Dict, Generator, List
6
+
7
+ from huggingface_hub import InferenceClient
8
+ from transformers import AutoTokenizer
9
+
10
+
11
+ OPENAI_KEY = os.getenv("OPENAI_API_KEY")
12
+ HF_TOKEN = os.getenv("HF_TOKEN")
13
+ TOKENIZER = AutoTokenizer.from_pretrained(os.getenv("HF_MODEL"))
14
+
15
+ HF_CLIENT = InferenceClient(
16
+ os.getenv("HF_MODEL"),
17
+ token=HF_TOKEN
18
+ )
19
+ OAI_CLIENT = openai.Client(api_key=OPENAI_KEY)
20
+
21
+ HF_GENERATE_KWARGS = {
22
+ 'temperature': max(float(os.getenv("TEMPERATURE", 0.9)), 1e-2),
23
+ 'max_new_tokens': int(os.getenv("MAX_NEW_TOKENS", 256)),
24
+ 'top_p': float(os.getenv("TOP_P", 0.6)),
25
+ 'repetition_penalty': float(os.getenv("REP_PENALTY", 1.2)),
26
+ 'do_sample': bool(os.getenv("DO_SAMPLE", True))
27
+ }
28
+
29
+ OAI_GENERATE_KWARGS = {
30
+ 'temperature': max(float(os.getenv("TEMPERATURE", 0.9)), 1e-2),
31
+ 'max_tokens': int(os.getenv("MAX_NEW_TOKENS", 256)),
32
+ 'top_p': float(os.getenv("TOP_P", 0.6)),
33
+ 'frequency_penalty': max(-2, min(float(os.getenv("FREQ_PENALTY", 0)), 2))
34
+ }
35
+
36
+
37
+ def format_prompt(message: str, api_kind: str):
38
+ """
39
+ Formats the given message using a chat template.
40
+
41
+ Args:
42
+ message (str): The user message to be formatted.
43
+ api_kind (str): LLM API provider.
44
+ Returns:
45
+ str: Formatted message after applying the chat template.
46
+ """
47
+
48
+ # Create a list of message dictionaries with role and content
49
+ messages: List[Dict[str, Any]] = [{'role': 'user', 'content': message}]
50
+
51
+ if api_kind == "openai":
52
+ return messages
53
+ elif api_kind == "hf":
54
+ return TOKENIZER.apply_chat_template(messages, tokenize=False)
55
+ elif api_kind:
56
+ raise ValueError("API is not supported")
57
+
58
+
59
+ def generate_hf(prompt: str, history: str) -> Generator[str, None, str]:
60
+ """
61
+ Generate a sequence of tokens based on a given prompt and history using Mistral client.
62
+
63
+ Args:
64
+ prompt (str): The prompt for the text generation.
65
+ history (str): Context or history for the text generation.
66
+ Returns:
67
+ Generator[str, None, str]: A generator yielding chunks of generated text.
68
+ Returns a final string if an error occurs.
69
+ """
70
+
71
+ formatted_prompt = format_prompt(prompt, "hf")
72
+ formatted_prompt = formatted_prompt.encode("utf-8").decode("utf-8")
73
+
74
+ try:
75
+ stream = HF_CLIENT.text_generation(
76
+ formatted_prompt,
77
+ **HF_GENERATE_KWARGS,
78
+ stream=True,
79
+ details=True,
80
+ return_full_text=False
81
+ )
82
+ output = ""
83
+ for response in stream:
84
+ output += response.token.text
85
+ yield output
86
+
87
+ except Exception as e:
88
+ if "Too Many Requests" in str(e):
89
+ raise gr.Error(f"Too many requests: {str(e)}")
90
+ elif "Authorization header is invalid" in str(e):
91
+ raise gr.Error("Authentication error: HF token was either not provided or incorrect")
92
+ else:
93
+ raise gr.Error(f"Unhandled Exception: {str(e)}")
94
+
95
+
96
+ def generate_openai(prompt: str, history: str) -> Generator[str, None, str]:
97
+ """
98
+ Generate a sequence of tokens based on a given prompt and history using Mistral client.
99
+
100
+ Args:
101
+ prompt (str): The initial prompt for the text generation.
102
+ history (str): Context or history for the text generation.
103
+ Returns:
104
+ Generator[str, None, str]: A generator yielding chunks of generated text.
105
+ Returns a final string if an error occurs.
106
+ """
107
+ formatted_prompt = format_prompt(prompt, "openai")
108
+
109
+ try:
110
+ stream = OAI_CLIENT.chat.completions.create(
111
+ model=os.getenv("OPENAI_MODEL"),
112
+ messages=formatted_prompt,
113
+ **OAI_GENERATE_KWARGS,
114
+ stream=True
115
+ )
116
+ output = ""
117
+ for chunk in stream:
118
+ if chunk.choices[0].delta.content:
119
+ output += chunk.choices[0].delta.content
120
+ yield output
121
+
122
+ except Exception as e:
123
+ if "Too Many Requests" in str(e):
124
+ raise gr.Error("ERROR: Too many requests on OpenAI client")
125
+ elif "You didn't provide an API key" in str(e):
126
+ raise gr.Error("Authentication error: OpenAI key was either not provided or incorrect")
127
+ else:
128
+ raise gr.Error(f"Unhandled Exception: {str(e)}")
backend/semantic_search.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import lancedb
2
+ import os
3
+ import gradio as gr
4
+ import numpy as np
5
+ from sentence_transformers import SentenceTransformer, CrossEncoder
6
+
7
+
8
+ db = lancedb.connect(".lancedb")
9
+
10
+ TABLE = db.open_table(os.getenv("TABLE_NAME"))
11
+ VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
12
+ TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
13
+ BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))
14
+
15
+ retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
16
+ reranker = CrossEncoder("RERANK_MODEL", max_length=512)
17
+
18
+
19
+ def retrieve(query, n):
20
+ query_vec = retriever.encode(query)
21
+ try:
22
+ documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(n).to_list()
23
+ documents = [doc[TEXT_COLUMN] for doc in documents]
24
+
25
+ return documents
26
+
27
+ except Exception as e:
28
+ raise gr.Error(str(e))
29
+
30
+ def rerank(query, documents, k):
31
+ query_doc_pairs = [[query, doc] for doc in documents]
32
+ similarity_scores = reranker.predict(query_doc_pairs)
33
+ sim_scores_argsort = reversed(np.argsort(similarity_scores))
34
+
35
+ rerank_documents = []
36
+
37
+ for idx in sim_scores_argsort[:k]:
38
+ rerank_documents.append(documents[idx])
39
+ return rerank_documents
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ lancedb==0.5.3
2
+ openai==1.11.1
3
+ sentence-transformers==2.3.1
4
+ tqdm==4.66.1
5
+ torch==2.1.1
6
+ transformers==4.37.2
7
+
templates/template.j2 ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ Instructions: Use the following unique documents in the Context section to answer the Query at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
2
+ Context:
3
+ {% for doc in documents %}
4
+ ---
5
+ {{ doc }}
6
+ {% endfor %}
7
+ ---
8
+ Query: {{ query }}
templates/template_html.j2 ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Information Page</title>
7
+ <link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600&amp;display=swap">
8
+ <link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:wght@400;600&amp;display=swap">
9
+ <style>
10
+ * {
11
+ font-family: "Source Sans Pro";
12
+ }
13
+
14
+ .instructions > * {
15
+ color: #111 !important;
16
+ }
17
+
18
+ details.doc-box * {
19
+ color: #111 !important;
20
+ }
21
+
22
+ .dark {
23
+ background: #111;
24
+ color: white;
25
+ }
26
+
27
+ .doc-box {
28
+ padding: 10px;
29
+ margin-top: 10px;
30
+ background-color: #baecc2;
31
+ border-radius: 6px;
32
+ color: #111 !important;
33
+ max-width: 700px;
34
+ box-shadow: rgba(0, 0, 0, 0.2) 0px 1px 2px 0px;
35
+ }
36
+
37
+ .doc-full {
38
+ margin: 10px 14px;
39
+ line-height: 1.6rem;
40
+ }
41
+
42
+ .instructions {
43
+ color: #111 !important;
44
+ background: #b7bdfd;
45
+ display: block;
46
+ border-radius: 6px;
47
+ padding: 6px 10px;
48
+ line-height: 1.6rem;
49
+ max-width: 700px;
50
+ box-shadow: rgba(0, 0, 0, 0.2) 0px 1px 2px 0px;
51
+ }
52
+
53
+ .query {
54
+ color: #111 !important;
55
+ background: #ffbcbc;
56
+ display: block;
57
+ border-radius: 6px;
58
+ padding: 6px 10px;
59
+ line-height: 1.6rem;
60
+ max-width: 700px;
61
+ box-shadow: rgba(0, 0, 0, 0.2) 0px 1px 2px 0px;
62
+ }
63
+ </style>
64
+ </head>
65
+ <body>
66
+ <div class="prose svelte-1ybaih5" id="component-6">
67
+ <h2>Prompt</h2>
68
+ Below is the prompt that is given to the model. <hr>
69
+ <h2>Instructions</h2>
70
+ <span class="instructions">Use the following pieces of context to answer the question at the end.<br>If you don't know the answer, just say that you don't know, <span style="font-weight: bold;">don't try to make up an answer.</span></span><br>
71
+ <h2>Context</h2>
72
+ {% for doc in documents %}
73
+ <details class="doc-box">
74
+ <summary>
75
+ <b>Doc {{ loop.index }}:</b> <span class="doc-short">{{ doc[:100] }}...</span>
76
+ </summary>
77
+ <div class="doc-full">{{ doc }}</div>
78
+ </details>
79
+ {% endfor %}
80
+
81
+ <h2>Query</h2>
82
+ <span class="query">{{ query }}</span>
83
+ </div>
84
+
85
+ <script>
86
+ document.addEventListener("DOMContentLoaded", function() {
87
+ const detailsElements = document.querySelectorAll('.doc-box');
88
+
89
+ detailsElements.forEach(detail => {
90
+ detail.addEventListener('toggle', function() {
91
+ const docShort = this.querySelector('.doc-short');
92
+ if (this.open) {
93
+ docShort.style.display = 'none';
94
+ } else {
95
+ docShort.style.display = 'inline';
96
+ }
97
+ });
98
+ });
99
+ });
100
+ </script>
101
+ </body>
102
+ </html>