import lancedb import os import gradio as gr import numpy as np from sentence_transformers import SentenceTransformer, CrossEncoder db = lancedb.connect(".lancedb") TABLE = db.open_table(os.getenv("TABLE_NAME")) VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) retriever = SentenceTransformer(os.getenv("EMB_MODEL")) reranker = CrossEncoder("RERANK_MODEL", max_length=512) def retrieve(query, n): query_vec = retriever.encode(query) try: documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(n).to_list() documents = [doc[TEXT_COLUMN] for doc in documents] return documents except Exception as e: raise gr.Error(str(e)) def rerank(query, documents, k): query_doc_pairs = [[query, doc] for doc in documents] similarity_scores = reranker.predict(query_doc_pairs) sim_scores_argsort = reversed(np.argsort(similarity_scores)) rerank_documents = [] for idx in sim_scores_argsort[:k]: rerank_documents.append(documents[idx]) return rerank_documents