from ultralytics import ASSETS, YOLO, RTDETR import gradio as gr from huggingface_hub import snapshot_download from PIL import Image model_dir = snapshot_download("omarelsayeed/DETR-ARABIC-DOCUMENT-LAYOUT-ANALYSIS") + "/rtdetr_1024_crops.pt" model = RTDETR(model_dir) def predict_image(img, conf_threshold, iou_threshold): """Predicts objects in an image using a YOLO11 model with adjustable confidence and IOU thresholds.""" results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=1024, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), ], outputs=gr.Image(type="pil", label="Result"), title="Ultralytics Gradio", description="Upload images for inference. The Ultralytics YOLO11n model is used by default.", examples=[ ["kashida.png", 0.2, 0.45], ["image.jpg", 0.2, 0.45], ["Screenshot 2024-11-06 130230.png" , 0.25 , 0.45] ], theme=gr.themes.Default() ) if __name__ == "__main__": iface.launch()