|
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor |
|
import streamlit as st |
|
import os |
|
from PIL import Image |
|
import torch |
|
import re |
|
|
|
@st.cache_resource |
|
def init_model(): |
|
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) |
|
model = model.eval() |
|
return model, tokenizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_qwen_model(): |
|
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16) |
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
return model, processor |
|
|
|
def get_quen_op(image_file, model, processor): |
|
try: |
|
image = Image.open(image_file).convert('RGB') |
|
conversation = [ |
|
{ |
|
"role":"user", |
|
"content":[ |
|
{ |
|
"type":"image", |
|
}, |
|
{ |
|
"type":"text", |
|
"text":"Extract text from this image." |
|
} |
|
] |
|
} |
|
] |
|
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt") |
|
inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()} |
|
|
|
generation_config = { |
|
"max_new_tokens": 32, |
|
"do_sample": False, |
|
"top_k": 20, |
|
"top_p": 0.90, |
|
"temperature": 0.4, |
|
"num_return_sequences": 1, |
|
"pad_token_id": processor.tokenizer.pad_token_id, |
|
"eos_token_id": processor.tokenizer.eos_token_id, |
|
} |
|
|
|
output_ids = model.generate(**inputs, **generation_config) |
|
if 'input_ids' in inputs: |
|
generated_ids = output_ids[:, inputs['input_ids'].shape[1]:] |
|
else: |
|
generated_ids = output_ids |
|
|
|
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
|
|
return output_text[:] if output_text else "No text extracted from the image." |
|
|
|
except Exception as e: |
|
return f"An error occurred: {str(e)}" |
|
|
|
@st.cache_data |
|
def get_text(image_file, _model, _tokenizer): |
|
res = _model.chat(_tokenizer, image_file, ocr_type='ocr') |
|
return res |
|
|
|
def highlight_text(text, search_term): |
|
if not search_term: |
|
return text |
|
pattern = re.compile(re.escape(search_term), re.IGNORECASE) |
|
return pattern.sub(lambda m: f'<span style="background-color: green;">{m.group()}</span>', text) |
|
|
|
st.title("Image To Text") |
|
st.write("Upload an image") |
|
|
|
MODEL, PROCESSOR = init_model() |
|
|
|
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg']) |
|
|
|
if image_file: |
|
if not os.path.exists("images"): |
|
os.makedirs("images") |
|
with open(f"images/{image_file.name}", "wb") as f: |
|
f.write(image_file.getbuffer()) |
|
|
|
image_file = f"images/{image_file.name}" |
|
|
|
text = get_text(image_file, MODEL, PROCESSOR) |
|
|
|
print(text) |
|
|
|
|
|
search_term = st.text_input("Enter a word or phrase to search:") |
|
highlighted_text = highlight_text(text, search_term) |
|
|
|
st.markdown(highlighted_text, unsafe_allow_html=True) |