Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,118 +1,15 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# os.system("sudo apt-get install xclip")
|
| 3 |
-
# import nltk
|
| 4 |
-
# from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException
|
| 5 |
-
# from fastapi.security.api_key import APIKeyHeader
|
| 6 |
-
# from typing import Optional, Annotated
|
| 7 |
-
# from fastapi.encoders import jsonable_encoder
|
| 8 |
-
# from PIL import Image
|
| 9 |
-
# from io import BytesIO
|
| 10 |
-
# import pytesseract
|
| 11 |
-
# from nltk.tokenize import sent_tokenize
|
| 12 |
-
# from transformers import MarianMTModel, MarianTokenizer
|
| 13 |
-
# nltk.download('punkt')
|
| 14 |
-
|
| 15 |
-
# API_KEY = os.environ.get("API_KEY")
|
| 16 |
-
|
| 17 |
-
# app = FastAPI()
|
| 18 |
-
# api_key_header = APIKeyHeader(name="api_key", auto_error=False)
|
| 19 |
-
|
| 20 |
-
# def get_api_key(api_key: Optional[str] = Depends(api_key_header)):
|
| 21 |
-
# if api_key is None or api_key != API_KEY:
|
| 22 |
-
# raise HTTPException(status_code=401, detail="Unauthorized access")
|
| 23 |
-
# return api_key
|
| 24 |
-
|
| 25 |
-
# # Image path
|
| 26 |
-
# img_dir = "./data"
|
| 27 |
-
# # Get tesseract language list
|
| 28 |
-
# choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
| 29 |
-
# # Convert tesseract language list to pytesseract language
|
| 30 |
-
# def ocr_lang(lang_list):
|
| 31 |
-
# lang_str = ""
|
| 32 |
-
# lang_len = len(lang_list)
|
| 33 |
-
# if lang_len == 1:
|
| 34 |
-
# return lang_list[0]
|
| 35 |
-
# else:
|
| 36 |
-
# for i in range(lang_len):
|
| 37 |
-
# lang_list.insert(lang_len - i, "+")
|
| 38 |
-
|
| 39 |
-
# lang_str = "".join(lang_list[:-1])
|
| 40 |
-
# return lang_str
|
| 41 |
-
# # ocr tesseract
|
| 42 |
-
# def ocr_tesseract(img, languages):
|
| 43 |
-
# print("[img]", img)
|
| 44 |
-
# print("[languages]", languages)
|
| 45 |
-
# ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
|
| 46 |
-
# return ocr_str
|
| 47 |
-
|
| 48 |
-
# @app.post("/api/ocr", response_model=dict)
|
| 49 |
-
# async def ocr(
|
| 50 |
-
# api_key: str = Depends(get_api_key),
|
| 51 |
-
# image: UploadFile = File(...),
|
| 52 |
-
# # languages: list = Body(["eng"])
|
| 53 |
-
# ):
|
| 54 |
-
|
| 55 |
-
# try:
|
| 56 |
-
# content = await image.read()
|
| 57 |
-
# image = Image.open(BytesIO(content))
|
| 58 |
-
# print("[image]",image)
|
| 59 |
-
# if hasattr(pytesseract, "image_to_string"):
|
| 60 |
-
# print("Image to string function is available")
|
| 61 |
-
# # print(pytesseract.image_to_string(image, lang = 'eng'))
|
| 62 |
-
# text = ocr_tesseract(image, ['eng'])
|
| 63 |
-
# else:
|
| 64 |
-
# print("Image to string function is not available")
|
| 65 |
-
# # text = pytesseract.image_to_string(image, lang="+".join(languages))
|
| 66 |
-
# except Exception as e:
|
| 67 |
-
# return {"error": str(e)}, 500
|
| 68 |
-
|
| 69 |
-
# return {"ImageText": "text"}
|
| 70 |
-
|
| 71 |
-
# @app.post("/api/translate", response_model=dict)
|
| 72 |
-
# async def translate(
|
| 73 |
-
# api_key: str = Depends(get_api_key),
|
| 74 |
-
# text: str = Body(...),
|
| 75 |
-
# src: str = "en",
|
| 76 |
-
# trg: str = "zh",
|
| 77 |
-
# ):
|
| 78 |
-
# if api_key != API_KEY:
|
| 79 |
-
# return {"error": "Invalid API key"}, 401
|
| 80 |
-
|
| 81 |
-
# tokenizer, model = get_model(src, trg)
|
| 82 |
-
|
| 83 |
-
# translated_text = ""
|
| 84 |
-
# for sentence in sent_tokenize(text):
|
| 85 |
-
# translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0]
|
| 86 |
-
# translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n"
|
| 87 |
-
|
| 88 |
-
# return jsonable_encoder({"translated_text": translated_text})
|
| 89 |
-
|
| 90 |
-
# def get_model(src: str, trg: str):
|
| 91 |
-
# model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
|
| 92 |
-
# tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 93 |
-
# model = MarianMTModel.from_pretrained(model_name)
|
| 94 |
-
# return tokenizer, model
|
| 95 |
-
|
| 96 |
-
# OCR Translate v0.2
|
| 97 |
-
|
| 98 |
-
|
| 99 |
import os
|
| 100 |
-
|
| 101 |
os.system("sudo apt-get install xclip")
|
| 102 |
-
|
| 103 |
-
# import gradio as gr
|
| 104 |
import nltk
|
| 105 |
-
import pyclip
|
| 106 |
-
import pytesseract
|
| 107 |
-
from nltk.tokenize import sent_tokenize
|
| 108 |
-
from transformers import MarianMTModel, MarianTokenizer
|
| 109 |
-
# Added below code
|
| 110 |
from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException
|
| 111 |
from fastapi.security.api_key import APIKeyHeader
|
| 112 |
from typing import Optional, Annotated
|
| 113 |
from fastapi.encoders import jsonable_encoder
|
| 114 |
from PIL import Image
|
| 115 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
API_KEY = os.environ.get("API_KEY")
|
| 118 |
|
|
@@ -130,13 +27,14 @@ async def ocr(
|
|
| 130 |
image: UploadFile = File(...),
|
| 131 |
# languages: list = Body(["eng"])
|
| 132 |
):
|
|
|
|
| 133 |
try:
|
| 134 |
content = await image.read()
|
| 135 |
image = Image.open(BytesIO(content))
|
| 136 |
print("[image]",image)
|
| 137 |
if hasattr(pytesseract, "image_to_string"):
|
| 138 |
print("Image to string function is available")
|
| 139 |
-
|
| 140 |
text = ocr_tesseract(image, ['eng'])
|
| 141 |
else:
|
| 142 |
print("Image to string function is not available")
|
|
@@ -146,171 +44,27 @@ async def ocr(
|
|
| 146 |
|
| 147 |
return {"ImageText": "text"}
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
| 159 |
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name
|
| 166 |
|
| 167 |
-
|
| 168 |
-
model = MarianMTModel.from_pretrained(model_name) # Model
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
return tokenizer, model
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
# Convert tesseract language list to pytesseract language
|
| 174 |
-
def ocr_lang(lang_list):
|
| 175 |
-
lang_str = ""
|
| 176 |
-
lang_len = len(lang_list)
|
| 177 |
-
if lang_len == 1:
|
| 178 |
-
return lang_list[0]
|
| 179 |
-
else:
|
| 180 |
-
for i in range(lang_len):
|
| 181 |
-
lang_list.insert(lang_len - i, "+")
|
| 182 |
-
|
| 183 |
-
lang_str = "".join(lang_list[:-1])
|
| 184 |
-
return lang_str
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
# ocr tesseract
|
| 188 |
-
def ocr_tesseract(img, languages):
|
| 189 |
-
print("[img]", img)
|
| 190 |
-
print("[languages]", languages)
|
| 191 |
-
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
|
| 192 |
-
return ocr_str
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
# Clear
|
| 196 |
-
def clear_content():
|
| 197 |
-
return None
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
# copy to clipboard
|
| 201 |
-
def cp_text(input_text):
|
| 202 |
-
# sudo apt-get install xclip
|
| 203 |
-
try:
|
| 204 |
-
pyclip.copy(input_text)
|
| 205 |
-
except Exception as e:
|
| 206 |
-
print("sudo apt-get install xclip")
|
| 207 |
-
print(e)
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
# clear clipboard
|
| 211 |
-
def cp_clear():
|
| 212 |
-
pyclip.clear()
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
# translate
|
| 216 |
-
def translate(input_text, inputs_transStyle):
|
| 217 |
-
# reference:https://huggingface.co/docs/transformers/model_doc/marian
|
| 218 |
-
if input_text is None or input_text == "":
|
| 219 |
-
return "System prompt: There is no content to translate!"
|
| 220 |
-
|
| 221 |
-
# Select translation model
|
| 222 |
-
trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1]
|
| 223 |
-
tokenizer, model = model_choice(trans_src, trans_trg)
|
| 224 |
-
|
| 225 |
-
translate_text = ""
|
| 226 |
-
input_text_list = input_text.split("\n\n")
|
| 227 |
-
|
| 228 |
-
translate_text_list_tmp = []
|
| 229 |
-
for i in range(len(input_text_list)):
|
| 230 |
-
if input_text_list[i] != "":
|
| 231 |
-
translate_text_list_tmp.append(input_text_list[i])
|
| 232 |
-
|
| 233 |
-
for i in range(len(translate_text_list_tmp)):
|
| 234 |
-
translated_sub = model.generate(
|
| 235 |
-
**tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True))
|
| 236 |
-
tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub]
|
| 237 |
-
translate_text_sub = "".join(tgt_text_sub)
|
| 238 |
-
translate_text = translate_text + "\n\n" + translate_text_sub
|
| 239 |
-
|
| 240 |
-
return translate_text[2:]
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
# def main():
|
| 244 |
-
|
| 245 |
-
# with gr.Blocks(css='style.css') as ocr_tr:
|
| 246 |
-
# gr.Markdown(OCR_TR_DESCRIPTION)
|
| 247 |
-
|
| 248 |
-
# # -------------- OCR text extraction --------------
|
| 249 |
-
# with gr.Box():
|
| 250 |
-
|
| 251 |
-
# with gr.Row():
|
| 252 |
-
# gr.Markdown("### Step 01: Text Extraction")
|
| 253 |
-
|
| 254 |
-
# with gr.Row():
|
| 255 |
-
# with gr.Column():
|
| 256 |
-
# with gr.Row():
|
| 257 |
-
# inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image")
|
| 258 |
-
# with gr.Row():
|
| 259 |
-
# inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"],
|
| 260 |
-
# type="value",
|
| 261 |
-
# value=['eng'],
|
| 262 |
-
# label='language')
|
| 263 |
-
|
| 264 |
-
# with gr.Row():
|
| 265 |
-
# clear_img_btn = gr.Button('Clear')
|
| 266 |
-
# ocr_btn = gr.Button(value='OCR Extraction', variant="primary")
|
| 267 |
-
|
| 268 |
-
# with gr.Column():
|
| 269 |
-
# with gr.Row():
|
| 270 |
-
# outputs_text = gr.Textbox(label="Extract content", lines=20)
|
| 271 |
-
# with gr.Row():
|
| 272 |
-
# inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"],
|
| 273 |
-
# type="value",
|
| 274 |
-
# value="zh-en",
|
| 275 |
-
# label='translation mode')
|
| 276 |
-
# with gr.Row():
|
| 277 |
-
# clear_text_btn = gr.Button('Clear')
|
| 278 |
-
# translate_btn = gr.Button(value='Translate', variant="primary")
|
| 279 |
-
|
| 280 |
-
# with gr.Row():
|
| 281 |
-
# example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]],
|
| 282 |
-
# ["./data/test03.png", ["chi_sim"]]]
|
| 283 |
-
# gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False)
|
| 284 |
-
|
| 285 |
-
# # -------------- translate --------------
|
| 286 |
-
# with gr.Box():
|
| 287 |
-
|
| 288 |
-
# with gr.Row():
|
| 289 |
-
# gr.Markdown("### Step 02: Translation")
|
| 290 |
-
|
| 291 |
-
# with gr.Row():
|
| 292 |
-
# outputs_tr_text = gr.Textbox(label="Translate Content", lines=20)
|
| 293 |
-
|
| 294 |
-
# with gr.Row():
|
| 295 |
-
# cp_clear_btn = gr.Button(value='Clear Clipboard')
|
| 296 |
-
# cp_btn = gr.Button(value='Copy to clipboard', variant="primary")
|
| 297 |
-
|
| 298 |
-
# # ---------------------- OCR Tesseract ----------------------
|
| 299 |
-
# ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
|
| 300 |
-
# outputs_text,])
|
| 301 |
-
# clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])
|
| 302 |
-
|
| 303 |
-
# # ---------------------- translate ----------------------
|
| 304 |
-
# translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text])
|
| 305 |
-
# clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])
|
| 306 |
-
|
| 307 |
-
# # ---------------------- copy to clipboard ----------------------
|
| 308 |
-
# cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
|
| 309 |
-
# cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])
|
| 310 |
-
|
| 311 |
-
# ocr_tr.launch(inbrowser=True)
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
# if __name__ == '__main__':
|
| 315 |
-
# main()
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
os.system("sudo apt-get install xclip")
|
|
|
|
|
|
|
| 3 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from fastapi import FastAPI, File, Request, UploadFile, Body, Depends, HTTPException
|
| 5 |
from fastapi.security.api_key import APIKeyHeader
|
| 6 |
from typing import Optional, Annotated
|
| 7 |
from fastapi.encoders import jsonable_encoder
|
| 8 |
from PIL import Image
|
| 9 |
from io import BytesIO
|
| 10 |
+
import pytesseract
|
| 11 |
+
from nltk.tokenize import sent_tokenize
|
| 12 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 13 |
|
| 14 |
API_KEY = os.environ.get("API_KEY")
|
| 15 |
|
|
|
|
| 27 |
image: UploadFile = File(...),
|
| 28 |
# languages: list = Body(["eng"])
|
| 29 |
):
|
| 30 |
+
|
| 31 |
try:
|
| 32 |
content = await image.read()
|
| 33 |
image = Image.open(BytesIO(content))
|
| 34 |
print("[image]",image)
|
| 35 |
if hasattr(pytesseract, "image_to_string"):
|
| 36 |
print("Image to string function is available")
|
| 37 |
+
print(pytesseract.image_to_string(image, lang = 'eng'))
|
| 38 |
text = ocr_tesseract(image, ['eng'])
|
| 39 |
else:
|
| 40 |
print("Image to string function is not available")
|
|
|
|
| 44 |
|
| 45 |
return {"ImageText": "text"}
|
| 46 |
|
| 47 |
+
@app.post("/api/translate", response_model=dict)
|
| 48 |
+
async def translate(
|
| 49 |
+
api_key: str = Depends(get_api_key),
|
| 50 |
+
text: str = Body(...),
|
| 51 |
+
src: str = "en",
|
| 52 |
+
trg: str = "zh",
|
| 53 |
+
):
|
| 54 |
+
if api_key != API_KEY:
|
| 55 |
+
return {"error": "Invalid API key"}, 401
|
|
|
|
| 56 |
|
| 57 |
+
tokenizer, model = get_model(src, trg)
|
| 58 |
|
| 59 |
+
translated_text = ""
|
| 60 |
+
for sentence in sent_tokenize(text):
|
| 61 |
+
translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0]
|
| 62 |
+
translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n"
|
|
|
|
| 63 |
|
| 64 |
+
return jsonable_encoder({"translated_text": translated_text})
|
|
|
|
| 65 |
|
| 66 |
+
def get_model(src: str, trg: str):
|
| 67 |
+
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
|
| 68 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 69 |
+
model = MarianMTModel.from_pretrained(model_name)
|
| 70 |
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|