Tarsier2-7b / tools /utils.py
omni-research's picture
update to tarsier2-7b-0115
dcd4560
# Copyright (2024) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from models.modeling_tarsier import TarsierForConditionalGeneration, LlavaConfig
# from dataset.processor import Processor
from dataset.tarsier_datamodule import init_processor
import torch
import base64
from tools.color import Color
import yaml
import os
HF_TOKEN = os.environ.get('HF_TOKEN', '')
def load_model_and_processor(model_name_or_path, data_config):
print(Color.red(f"Load model and processor from: {model_name_or_path}"), flush=True)
if isinstance(data_config, str):
data_config = yaml.safe_load(open(data_config, 'r'))
processor = init_processor(model_name_or_path, data_config)
model_config = LlavaConfig.from_pretrained(
model_name_or_path,
trust_remote_code=True,
token=HF_TOKEN,
)
model = TarsierForConditionalGeneration.from_pretrained(
model_name_or_path,
config=model_config,
device_map='auto',
torch_dtype=torch.float16,
trust_remote_code=True,
token=HF_TOKEN,
)
model.eval()
return model, processor
def file_to_base64(img_path):
with open(img_path, 'rb') as video_file:
video_b64_str = base64.b64encode(video_file.read()).decode()
return video_b64_str