Update app.py
Browse files
app.py
CHANGED
@@ -1,204 +1,81 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
from
|
|
|
6 |
|
7 |
-
from
|
8 |
-
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
-
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
API.restart_space(repo_id=REPO_ID)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
except Exception:
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
(
|
55 |
-
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
|
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
return Leaderboard(
|
64 |
value=dataframe,
|
65 |
-
datatype=[
|
66 |
select_columns=SelectColumns(
|
67 |
-
default_selection=[
|
68 |
-
cant_deselect=[
|
69 |
label="Select Columns to Display:",
|
70 |
),
|
71 |
-
search_columns=[
|
72 |
-
hide_columns=[
|
73 |
-
filter_columns=[
|
74 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
-
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
89 |
)
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
-
demo = gr.Blocks(
|
93 |
-
with demo:
|
94 |
-
gr.HTML(TITLE)
|
95 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
-
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Row():
|
192 |
-
with gr.Accordion("📙 Citation", open=False):
|
193 |
-
citation_button = gr.Textbox(
|
194 |
-
value=CITATION_BUTTON_TEXT,
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
-
|
201 |
-
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from collections import defaultdict
|
5 |
+
from gradio_leaderboard import Leaderboard, SelectColumns
|
6 |
|
7 |
+
# Load the DataFrame from the CSV file for detailed pass@k metrics
|
8 |
+
df = pd.read_csv('results.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Function to estimate pass@k
|
11 |
+
def estimate_pass_at_k(num_samples, num_correct, k):
|
12 |
+
def estimator(n, c, k):
|
13 |
+
if n - c < k:
|
14 |
+
return 1.0
|
15 |
+
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
|
16 |
|
17 |
+
return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)])
|
|
|
18 |
|
19 |
+
# Function to calculate pass@k
|
20 |
+
def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]):
|
21 |
+
filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)]
|
22 |
+
num_samples = filtered_df['Runs'].values
|
23 |
+
num_correct = filtered_df['Successes'].values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values}
|
26 |
+
return pass_at_k
|
27 |
|
28 |
+
# Function to filter data and calculate pass@k
|
29 |
+
def filter_data(model, scenario):
|
30 |
+
pass_at_k = calculate_pass_at_k(df, model, scenario)
|
31 |
+
return pd.DataFrame([pass_at_k])
|
|
|
|
|
|
|
32 |
|
33 |
+
# Initialize the leaderboard
|
34 |
def init_leaderboard(dataframe):
|
35 |
if dataframe is None or dataframe.empty:
|
36 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
37 |
return Leaderboard(
|
38 |
value=dataframe,
|
39 |
+
datatype=["markdown", "number", "number", "number"], # Specify the types of your columns
|
40 |
select_columns=SelectColumns(
|
41 |
+
default_selection=["Model", "pass@1", "pass@5", "pass@10"], # Columns to display by default
|
42 |
+
cant_deselect=[], # Columns that cannot be deselected
|
43 |
label="Select Columns to Display:",
|
44 |
),
|
45 |
+
search_columns=["Model"], # Columns that can be searched
|
46 |
+
hide_columns=[], # Columns to hide
|
47 |
+
filter_columns=[], # Filters for the columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
bool_checkboxgroup_label="Hide models",
|
49 |
interactive=False,
|
50 |
)
|
51 |
|
52 |
+
# Gradio interface
|
53 |
+
models = df['Model'].unique()
|
54 |
+
scenarios = df['Scenario'].unique()
|
55 |
|
56 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
with demo:
|
59 |
+
gr.Markdown("# 🏆 WebApp1K Detailed Leaderboard")
|
60 |
+
|
61 |
+
model_input = gr.Dropdown(choices=models, label="Select Model")
|
62 |
+
scenario_input = gr.Dropdown(choices=scenarios, label="Select Scenario")
|
63 |
+
output = gr.DataFrame(headers=["pass@1", "pass@5", "pass@10"])
|
64 |
+
|
65 |
+
filter_button = gr.Button("Filter")
|
66 |
+
filter_button.click(filter_data, inputs=[model_input, scenario_input], outputs=output)
|
67 |
+
|
68 |
+
output.render()
|
69 |
+
|
70 |
+
# Initialize leaderboard with the complete DataFrame
|
71 |
+
complete_pass_at_k = df.groupby('Model').apply(lambda x: pd.Series({
|
72 |
+
'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(),
|
73 |
+
'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(),
|
74 |
+
'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean()
|
75 |
+
})).reset_index()
|
76 |
+
|
77 |
+
leaderboard = init_leaderboard(complete_pass_at_k)
|
78 |
+
leaderboard.render()
|
79 |
+
|
80 |
+
# Launch the Gradio interface
|
81 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|