import gradio as gr import pandas as pd import numpy as np from collections import defaultdict from gradio_leaderboard import Leaderboard, SelectColumns # Load the DataFrame from the CSV file for detailed pass@k metrics df = pd.read_csv('results.csv') # Ensure 'Model' and 'Scenario' columns are strings df['Model'] = df['Model'].astype(str) df['Scenario'] = df['Scenario'].astype(str) # Function to estimate pass@k def estimate_pass_at_k(num_samples, num_correct, k): def estimator(n, c, k): if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)]) # Function to calculate pass@k def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]): filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)] num_samples = filtered_df['Runs'].values num_correct = filtered_df['Successes'].values pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values} return pass_at_k # Function to filter data and calculate pass@k def filter_data(model, scenario): pass_at_k = calculate_pass_at_k(df, model, scenario) return pd.DataFrame([pass_at_k]) # Initialize the leaderboard def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=["markdown", "number", "number", "number"], # Specify the types of your columns select_columns=SelectColumns( default_selection=["Model", "pass@1", "pass@5", "pass@10"], # Columns to display by default cant_deselect=[], # Columns that cannot be deselected label="Select Columns to Display:", ), search_columns=["Model"], # Columns that can be searched hide_columns=[], # Columns to hide filter_columns=[], # Filters for the columns bool_checkboxgroup_label="Hide models", interactive=False, ) # Gradio interface models = df['Model'].unique().tolist() scenarios = df['Scenario'].unique().tolist() demo = gr.Blocks() with demo: gr.Markdown("# 🏆 WebApp1K Models Leaderboard") gr.Markdown( "## [Arxiv](http://arxiv.org/abs/2408.00019) " + "[Github](https://github.com/onekq/WebApp1k) " + "[AI Models](https://www.aimodels.fyi/papers/arxiv/webapp1k-practical-code-generation-benchmark-web-app)") # Initialize leaderboard with the complete DataFrame complete_pass_at_k = df.groupby('Model')[['Runs', 'Successes']].apply(lambda x: pd.Series({ 'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(), 'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(), 'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean() }, index=['pass@1', 'pass@5', 'pass@10'])).reset_index() leaderboard = init_leaderboard(complete_pass_at_k) model_input = gr.Dropdown(choices=models, label="Select Model") scenario_input = gr.Dropdown(choices=scenarios, label="Select Category") output = gr.DataFrame(headers=["pass@1", "pass@5", "pass@10"]) filter_button = gr.Button("Filter") filter_button.click(filter_data, inputs=[model_input, scenario_input], outputs=output) # Launch the Gradio interface demo.launch()