import io import numpy as np import onnxruntime from torch import nn import torch.utils.model_zoo as model_zoo import torch.onnx import torch.nn as nn import torch.nn.init as init import matplotlib.pyplot as plt import json from PIL import Image, ImageDraw, ImageFont from resizeimage import resizeimage import numpy as np import pdb import onnx import gradio as gr class SuperResolutionNet(nn.Module): def __init__(self, upscale_factor, inplace=False): super(SuperResolutionNet, self).__init__() self.relu = nn.ReLU(inplace=inplace) self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) self.pixel_shuffle = nn.PixelShuffle(upscale_factor) self._initialize_weights() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.pixel_shuffle(self.conv4(x)) return x def _initialize_weights(self): init.orthogonal_(self.conv1.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv2.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv3.weight, init.calculate_gain('relu')) init.orthogonal_(self.conv4.weight) # Create the super-resolution model by using the above model definition. torch_model = SuperResolutionNet(upscale_factor=3) model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth' batch_size = 1 # just a random number # Initialize model with the pretrained weights map_location = lambda storage, loc: storage if torch.cuda.is_available(): map_location = None torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location)) x = torch.randn(1, 1, 224, 224, requires_grad=True) torch_model.eval() os.system("wget https://github.com/AK391/models/raw/main/vision/super_resolution/sub_pixel_cnn_2016/model/super-resolution-10.onnx") # Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers # other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default # based on the build flags) when instantiating InferenceSession. # For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following: # onnxruntime.InferenceSession(path/to/model, providers=['CUDAExecutionProvider']) ort_session = onnxruntime.InferenceSession("super-resolution-10.onnx") ort_inputs = {ort_session.get_inputs()[0].name: img_5} ort_outs = ort_session.run(None, ort_inputs) img_out_y = ort_outs[0] def inference(img): orig_img = Image.open(img) img = resizeimage.resize_cover(orig_img, [224,224], validate=False) img_ycbcr = img.convert('YCbCr') img_y_0, img_cb, img_cr = img_ycbcr.split() img_ndarray = np.asarray(img_y_0) img_4 = np.expand_dims(np.expand_dims(img_ndarray, axis=0), axis=0) img_5 = img_4.astype(np.float32) / 255.0 img_out_y = Image.fromarray(np.uint8((img_out_y[0] * 255.0).clip(0, 255)[0]), mode='L') final_img = Image.merge( "YCbCr", [ img_out_y, img_cb.resize(img_out_y.size, Image.BICUBIC), img_cr.resize(img_out_y.size, Image.BICUBIC), ]).convert("RGB") return final_image gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil")).launch()