File size: 2,920 Bytes
15c8167
 
 
 
460930f
15c8167
 
 
 
 
460930f
15c8167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c9efa
 
 
 
460930f
15c8167
 
 
 
 
 
 
 
c2c9efa
 
15c8167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6ab81
15c8167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json

import gradio as gr
import pandas as pd
from huggingface_hub import HfFileSystem

from src.constants import RESULTS_DATASET_ID, TASKS


def fetch_result_paths():
    fs = HfFileSystem()
    paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
    return paths


def filter_latest_result_path_per_model(paths):
    from collections import defaultdict

    d = defaultdict(list)
    for path in paths:
        model_id, _ = path[len(RESULTS_DATASET_ID) + 1:].rsplit("/", 1)
        d[model_id].append(path)
    return {model_id: max(paths) for model_id, paths in d.items()}


def update_load_results_component():
    return gr.Button("Load Results", interactive=True)


def load_results_dataframe(model_id, result_path_per_model=None):
    if not model_id or not result_path_per_model:
        return
    result_path = result_path_per_model[model_id]
    fs = HfFileSystem()
    with fs.open(result_path, "r") as f:
        data = json.load(f)
    model_name = data.get("model_name", "Model")
    df = pd.json_normalize([{key: value for key, value in data.items()}])
    # df.columns = df.columns.str.split(".")  # .split return a list instead of a tuple
    return df.set_index(pd.Index([model_name])).reset_index()


def load_results_dataframes(*model_ids, result_path_per_model=None):
    return [load_results_dataframe(model_id, result_path_per_model=result_path_per_model) for model_id in model_ids]


def display_results(task, *dfs):
    dfs = [df.set_index("index") for df in dfs if "index" in df.columns]
    if not dfs:
        return None, None
    df = pd.concat(dfs)
    df = df.T.rename_axis(columns=None)
    return display_tab("results", df, task), display_tab("configs", df, task)


def display_tab(tab, df, task):
    df = df.style.format(na_rep="")
    df.hide(
        [
            row
            for row in df.index
            if (
                not row.startswith(f"{tab}.")
                or row.startswith(f"{tab}.leaderboard.")
                or row.endswith(".alias")
                or (not row.startswith(f"{tab}.{task}") if task != "All" else False)
            )
        ],
        axis="index",
    )
    start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ")
    df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index")
    return df.to_html()


def update_tasks_component():
    return gr.Radio(
            ["All"] + list(TASKS.values()),
            label="Tasks",
            info="Evaluation tasks to be displayed",
            value="All",
            visible=True,
        )


def clear_results():
    # model_id_1, model_id_2, dataframe_1, dataframe_2, task
    return (
        None, None, None, None,
        gr.Radio(
            ["All"] + list(TASKS.values()),
            label="Tasks",
            info="Evaluation tasks to be displayed",
            value="All",
            interactive=False,
        ),
    )