comparator / src /results.py
albertvillanova's picture
Remove ARC task by hiding from All
6099782 verified
raw
history blame
3.65 kB
import json
import gradio as gr
import numpy as np
import pandas as pd
from huggingface_hub import HfFileSystem
from src.constants import RESULTS_DATASET_ID, TASKS
def fetch_result_paths():
fs = HfFileSystem()
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
return paths
def sort_result_paths_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(RESULTS_DATASET_ID) + 1:].rsplit("/", 1)
d[model_id].append(path)
return {model_id: sorted(paths) for model_id, paths in d.items()}
def update_load_results_component():
return (gr.Button("Load", interactive=True), ) * 2
def load_results_dataframe(model_id, result_paths_per_model=None):
if not model_id or not result_paths_per_model:
return
result_paths = result_paths_per_model[model_id]
fs = HfFileSystem()
data = {"results": {}, "configs": {}}
for path in result_paths:
with fs.open(path, "r") as f:
d = json.load(f)
data["results"].update(d["results"])
data["configs"].update(d["configs"])
model_name = d.get("model_name", "Model")
df = pd.json_normalize([{key: value for key, value in data.items()}])
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
return df.set_index(pd.Index([model_name])).reset_index()
def load_results_dataframes(*model_ids, result_paths_per_model=None):
return [load_results_dataframe(model_id, result_paths_per_model=result_paths_per_model) for model_id in model_ids]
def display_results(task, *dfs):
dfs = [df.set_index("index") for df in dfs if "index" in df.columns]
if not dfs:
return None, None
df = pd.concat(dfs)
df = df.T.rename_axis(columns=None)
return display_tab("results", df, task), display_tab("configs", df, task)
def display_tab(tab, df, task):
df = df.style.format(na_rep="")
df.hide(
[
row
for row in df.index
if (
not row.startswith(f"{tab}.")
or row.startswith(f"{tab}.leaderboard.")
or row.endswith(".alias")
or (not row.startswith(f"{tab}.{task}") if task != "All" else row.startswith(f"{tab}.leaderboard_arc_challenge"))
)
],
axis="index",
)
df.apply(highlight_min_max, axis=1)
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ")
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index")
return df.to_html()
def update_tasks_component():
return (
gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
visible=True,
),
) * 2
def clear_results():
# model_id_1, model_id_2, dataframe_1, dataframe_2, load_results_btn, load_configs_btn, results_task, configs_task
return (
None, None, None, None,
*(gr.Button("Load", interactive=False), ) * 2,
*(
gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
visible=False,
),
) * 2,
)
def highlight_min_max(s):
if s.name.endswith("acc,none") or s.name.endswith("acc_norm,none") or s.name.endswith("exact_match,none"):
return np.where(s == np.nanmax(s.values), "background-color:green", "background-color:red")
else:
return [""] * len(s)