Spaces:
Runtime error
Runtime error
import asyncio | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfFileSystem | |
import src.constants as constants | |
from src.hub import load_details_file | |
def update_task_description_component(task): | |
base_description = constants.TASK_DESCRIPTIONS.get(task, "") | |
additional_info = "A higher score is a better score." | |
description = f"{base_description}\n\n{additional_info}" if base_description else additional_info | |
return gr.Textbox( | |
description, | |
label="Task Description", | |
lines=6, | |
visible=True, | |
) | |
def update_subtasks_component(task, profile: gr.OAuthProfile | None): | |
visible_login_btn = True if task == "leaderboard_gpqa" else False | |
subtasks = None if task == "leaderboard_gpqa" and not profile else constants.SUBTASKS.get(task) | |
return ( | |
gr.LoginButton(size="sm", visible=visible_login_btn), | |
gr.Radio( | |
choices=subtasks, | |
info="Evaluation subtasks to be loaded", | |
value=None, | |
), | |
) | |
def update_load_details_component(model_id_1, model_id_2, subtask): | |
if (model_id_1 or model_id_2) and subtask: | |
return gr.Button("Load Details", interactive=True) | |
else: | |
return gr.Button("Load Details", interactive=False) | |
async def load_details_dataframe(model_id, subtask): | |
fs = HfFileSystem() | |
if not model_id or not subtask: | |
return | |
model_name_sanitized = model_id.replace("/", "__") | |
paths = fs.glob( | |
f"{constants.DETAILS_DATASET_ID}/**/{constants.DETAILS_FILENAME}".format( | |
model_name_sanitized=model_name_sanitized, subtask=subtask | |
) | |
) | |
if not paths: | |
return | |
path = max(paths) | |
data = await load_details_file(path) | |
df = pd.json_normalize(data) | |
# df = df.rename_axis("Parameters", axis="columns") | |
df["model_name"] = model_id # Keep model_name | |
return df | |
# return df.set_index(pd.Index([model_id])).reset_index() | |
async def load_details_dataframes(subtask, *model_ids): | |
result = await asyncio.gather(*[load_details_dataframe(model_id, subtask) for model_id in model_ids]) | |
return result | |
def display_details(sample_idx, show_only_differences, *dfs): | |
rows = [df.iloc[sample_idx] for df in dfs if "model_name" in df.columns and sample_idx < len(df)] | |
if not rows: | |
return | |
# Pop model_name and add it to the column name | |
df = pd.concat([row.rename(row.pop("model_name")) for row in rows], axis="columns") | |
# Wrap long strings to avoid overflow; e.g. URLs in "doc.Websites visited_NEV_2" | |
def wrap(row): | |
try: | |
result = row.str.wrap(140) | |
return result if result.notna().all() else row # NaN when data is a list | |
except AttributeError: # when data is number | |
return row | |
df = df.apply(wrap, axis=1) | |
if show_only_differences: | |
any_difference = df.ne(df.iloc[:, 0], axis=0).any(axis=1) | |
# Style | |
return ( | |
df.style.format(escape="html", na_rep="") | |
# .hide(axis="index") | |
# Hide non-different rows | |
.hide([row for row in df.index if show_only_differences and not any_difference[row]]) | |
.to_html() | |
) | |
def update_sample_idx_component(*dfs): | |
maximum = max([len(df) - 1 for df in dfs]) | |
return gr.Number( | |
label="Sample Index", | |
info="Index of the sample to be displayed", | |
value=0, | |
minimum=0, | |
maximum=maximum, | |
visible=True, | |
) | |
def clear_details(): | |
# model_id_1, model_id_2, details_dataframe_1, details_dataframe_2, details_task, subtask, load_details_btn, sample_idx | |
return ( | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
gr.Button("Load Details", interactive=False), | |
gr.Number(label="Sample Index", info="Index of the sample to be displayed", value=0, minimum=0, visible=False), | |
) | |
def display_loading_message_for_details(): | |
return "<h3 style='text-align: center;'>Loading...</h3>" | |