Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Use tuples and simplify views
Browse files
app.py
CHANGED
@@ -53,9 +53,10 @@ def load_result(model_id):
|
|
53 |
result_path = get_result_path_from_model(model_id, latest_result_path_per_model)
|
54 |
data = load_data(result_path)
|
55 |
model_name = data.get("model_name", "Model")
|
|
|
56 |
result = [
|
57 |
-
to_vertical(
|
58 |
-
to_vertical(to_dataframe_results(
|
59 |
]
|
60 |
return result
|
61 |
|
@@ -65,30 +66,42 @@ def to_dataframe(data):
|
|
65 |
|
66 |
|
67 |
def to_vertical(df, model_name):
|
68 |
-
|
|
|
|
|
69 |
|
70 |
|
71 |
def to_dataframe_all(data):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
def concat_result_1(result_1, results):
|
|
|
53 |
result_path = get_result_path_from_model(model_id, latest_result_path_per_model)
|
54 |
data = load_data(result_path)
|
55 |
model_name = data.get("model_name", "Model")
|
56 |
+
df = to_dataframe_all(data)
|
57 |
result = [
|
58 |
+
to_vertical(df, model_name),
|
59 |
+
to_vertical(to_dataframe_results(df), model_name)
|
60 |
]
|
61 |
return result
|
62 |
|
|
|
66 |
|
67 |
|
68 |
def to_vertical(df, model_name):
|
69 |
+
df = df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index()
|
70 |
+
df.index = df.index.str.join(".")
|
71 |
+
return df
|
72 |
|
73 |
|
74 |
def to_dataframe_all(data):
|
75 |
+
df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}])
|
76 |
+
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
|
77 |
+
df.columns = list(map(lambda x: tuple(x.split(".")), df.columns))
|
78 |
+
return df
|
79 |
+
|
80 |
+
#
|
81 |
+
# def to_dataframe_results(data):
|
82 |
+
# dfs = {}
|
83 |
+
# for key in data["results"]:
|
84 |
+
# if key not in EXCLUDED_RESULTS_KEYS: # key.startswith("leaderboard_"):
|
85 |
+
# name = key[len("leaderboard_"):]
|
86 |
+
# df = to_dataframe(
|
87 |
+
# {
|
88 |
+
# key: value
|
89 |
+
# for key, value in data["results"][key].items()
|
90 |
+
# if key not in EXCLUDED_RESULTS_LEADERBOARDS_KEYS
|
91 |
+
# }
|
92 |
+
# )
|
93 |
+
# # df.drop(columns=["alias"])
|
94 |
+
# # df.columns = pd.MultiIndex.from_product([[name], df.columns])
|
95 |
+
# df.columns = [f"{name}.{column}" for column in df.columns]
|
96 |
+
# dfs[name] = df
|
97 |
+
# return pd.concat(dfs.values(), axis="columns")
|
98 |
+
|
99 |
+
|
100 |
+
def to_dataframe_results(df):
|
101 |
+
df = df.loc[:, df.columns.str[0] == "results"]
|
102 |
+
df = df.loc[:, ~df.columns.str[1].isin(EXCLUDED_RESULTS_KEYS)]
|
103 |
+
df = df.loc[:, ~df.columns.str[2].isin(EXCLUDED_RESULTS_LEADERBOARDS_KEYS)]
|
104 |
+
return df
|
105 |
|
106 |
|
107 |
def concat_result_1(result_1, results):
|