import json import gradio as gr import pandas as pd from huggingface_hub import HfFileSystem RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results" EXCLUDED_KEYS = { "pretty_env_info", "chat_template", "group_subtasks", } EXCLUDED_RESULTS_KEYS = { "leaderboard", } EXCLUDED_RESULTS_LEADERBOARDS_KEYS = { "alias", } fs = HfFileSystem() def fetch_result_paths(): paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") return paths def filter_latest_result_path_per_model(paths): from collections import defaultdict d = defaultdict(list) for path in paths: model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1) d[model_id].append(path) return {model_id: max(paths) for model_id, paths in d.items()} def get_result_path_from_model(model_id, result_path_per_model): return result_path_per_model[model_id] def load_data(result_path) -> pd.DataFrame: with fs.open(result_path, "r") as f: data = json.load(f) return data # model_name = data.get("model_name", "Model") # df = pd.json_normalize([data]) # return df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index() def load_result(model_id): result_path = get_result_path_from_model(model_id, latest_result_path_per_model) data = load_data(result_path) df = to_dataframe_all(data) result = [ to_vertical(df), to_vertical(to_dataframe_results(df)) ] return result def to_dataframe(data): return pd.DataFrame.from_records([data]) def to_vertical(df): # df = df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index() df = df.iloc[0].rename_axis("Parameters").to_frame() # .reset_index() df.index = df.index.str.join(".") return df def to_dataframe_all(data): df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}]) # df.columns = df.columns.str.split(".") # .split return a list instead of a tuple df.columns = list(map(lambda x: tuple(x.split(".")), df.columns)) df.index = [data.get("model_name", "Model")] return df # # def to_dataframe_results(data): # dfs = {} # for key in data["results"]: # if key not in EXCLUDED_RESULTS_KEYS: # key.startswith("leaderboard_"): # name = key[len("leaderboard_"):] # df = to_dataframe( # { # key: value # for key, value in data["results"][key].items() # if key not in EXCLUDED_RESULTS_LEADERBOARDS_KEYS # } # ) # # df.drop(columns=["alias"]) # # df.columns = pd.MultiIndex.from_product([[name], df.columns]) # df.columns = [f"{name}.{column}" for column in df.columns] # dfs[name] = df # return pd.concat(dfs.values(), axis="columns") def to_dataframe_results(df): df = df.loc[:, df.columns.str[0] == "results"] df = df.loc[:, ~df.columns.str[1].isin(EXCLUDED_RESULTS_KEYS)] df = df.loc[:, ~df.columns.str[2].isin(EXCLUDED_RESULTS_LEADERBOARDS_KEYS)] return df def concat_result_1(result_1, results): return pd.concat([result_1, results.iloc[:, [0, 2]].set_index("Parameters")], axis=1).reset_index() def concat_result_2(result_2, results): return pd.concat([results.iloc[:, [0, 1]].set_index("Parameters"), result_2], axis=1).reset_index() def render_result_1(model_id, *results): result = load_result(model_id) return [concat_result_1(*result_args) for result_args in zip(result, results)] def render_result_2(model_id, *results): result = load_result(model_id) return [concat_result_2(*result_args) for result_args in zip(result, results)] # if __name__ == "__main__": latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) with gr.Blocks(fill_height=True) as demo: gr.HTML("