import io
import json
import gradio as gr
import pandas as pd
from huggingface_hub import HfFileSystem
RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results"
EXCLUDED_KEYS = {
"pretty_env_info",
"chat_template",
"group_subtasks",
}
EXCLUDED_RESULTS_KEYS = {
"leaderboard",
}
EXCLUDED_RESULTS_LEADERBOARDS_KEYS = {
"alias",
}
DEFAULT_HTML_TABLE = """
Parameters |
Model-1 |
Model-2 |
"""
TASKS = {
"leaderboard_arc_challenge": ("ARC", "leaderboard_arc_challenge"),
"leaderboard_bbh": ("BBH", "leaderboard_bbh"),
"leaderboard_gpqa": ("GPQA", "leaderboard_gpqa"),
"leaderboard_ifeval": ("IFEval", "leaderboard_ifeval"),
"leaderboard_math_hard": ("MATH", "leaderboard_math"),
"leaderboard_mmlu_pro": ("MMLU-Pro", "leaderboard_mmlu_pro"),
"leaderboard_musr": ("MuSR", "leaderboard_musr"),
}
fs = HfFileSystem()
def fetch_result_paths():
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
return paths
def filter_latest_result_path_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1)
d[model_id].append(path)
return {model_id: max(paths) for model_id, paths in d.items()}
def get_result_path_from_model(model_id, result_path_per_model):
return result_path_per_model[model_id]
def load_data(result_path) -> pd.DataFrame:
with fs.open(result_path, "r") as f:
data = json.load(f)
return data
def load_result(model_id):
result_path = get_result_path_from_model(model_id, latest_result_path_per_model)
data = load_data(result_path)
df = to_dataframe(data)
result = [
# to_vertical(df),
to_vertical(filter_results(df)),
to_vertical(filter_configs(df)),
]
return result
def to_vertical(df):
df = df.T.rename_axis("Parameters")
df.index = df.index.str.join(".")
return df
def to_dataframe(data):
df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}])
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
df.columns = list(map(lambda x: tuple(x.split(".")), df.columns))
df.index = [data.get("model_name", "Model")]
return df
def filter_results(df):
df = df.loc[:, df.columns.str[0] == "results"]
df = df.loc[:, ~df.columns.str[1].isin(EXCLUDED_RESULTS_KEYS)]
# df.columns.str[1].str = df.columns.str[1].str.removeprefix("leaderboard_")
df = df.loc[:, ~df.columns.str[2].isin(EXCLUDED_RESULTS_LEADERBOARDS_KEYS)]
df.columns = df.columns.str[1:]
df.columns = map(lambda x: (x[0].removeprefix("leaderboard_"), *x[1:]), df.columns)
return df
def filter_configs(df):
df = df.loc[:, df.columns.str[0] == "configs"]
# df = df.loc[:, ~df.columns.str[1].isin(EXCLUDED_RESULTS_KEYS)]
# df = df.loc[:, ~df.columns.str[2].isin(EXCLUDED_RESULTS_LEADERBOARDS_KEYS)]
df.columns = df.columns.str[1:]
df.columns = map(lambda x: (x[0].removeprefix("leaderboard_"), *x[1:]), df.columns)
return df
def concat_result_1(result_1, results):
results = pd.read_html(io.StringIO(results))[0]
df = (
pd.concat([result_1, results.iloc[:, [0, 2]].set_index("Parameters")], axis=1)
.reset_index()
)
return df
def display_dataframe(df):
# style = Styler(df, uuid_len=0, cell_ids=False)
return (
df.style
.format(na_rep="")
.hide(axis="index")
.to_html()
)
def concat_result_2(result_2, results):
results = pd.read_html(io.StringIO(results))[0]
df = (
pd.concat([results.iloc[:, [0, 1]].set_index("Parameters"), result_2], axis=1)
.reset_index()
)
return df
def render_result_1(model_id, task, *results):
result = load_result(model_id)
concat_results = [concat_result_1(*result_args) for result_args in zip(result, results)]
if task:
concat_results = [df[df["Parameters"].str.startswith(task[len("leaderboard_"):])] for df in concat_results]
return [display_dataframe(df) for df in concat_results]
def render_result_2(model_id, task, *results):
result = load_result(model_id)
concat_results = [concat_result_2(*result_args) for result_args in zip(result, results)]
if task:
concat_results = [df[df["Parameters"].str.startswith(task[len("leaderboard_"):])] for df in concat_results]
return [display_dataframe(df) for df in concat_results]
def render_results(model_id_1, model_id_2, task, *results):
results = render_result_1(model_id_1, task, *results)
return render_result_2(model_id_2, task, *results)
# if __name__ == "__main__":
latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths())
with gr.Blocks(fill_height=True) as demo:
gr.HTML("Compare Results of the 🤗 Open LLM Leaderboard
")
gr.HTML("Select 2 results to load and compare
")
with gr.Row():
with gr.Column():
model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results")
load_btn_1 = gr.Button("Load")
with gr.Column():
model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results")
load_btn_2 = gr.Button("Load")
with gr.Row():
task = gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
)
results = []
with gr.Row():
# with gr.Tab("All"):
# # results.append(gr.Dataframe(
# # label="Results",
# # headers=["Parameters", "Model-1", "Model-2"],
# # interactive=False,
# # column_widths=["30%", "30%", "30%"],
# # wrap=True,
# # ))
# results.append(gr.HTML(value=DEFAULT_HTML_TABLE))
with gr.Tab("Results"):
# results.append(gr.Dataframe(
# label="Results",
# headers=["Parameters", "Model-1", "Model-2"],
# interactive=False,
# column_widths=["30%", "30%", "30%"],
# wrap=True,
# ))
results.append(gr.HTML(value=DEFAULT_HTML_TABLE))
with gr.Tab("Configs"):
# results.append(gr.Dataframe(
# label="Results",
# headers=["Parameters", "Model-1", "Model-2"],
# interactive=False,
# column_widths=["30%", "30%", "30%"],
# wrap=True,
# ))
results.append(gr.HTML(value=DEFAULT_HTML_TABLE))
load_btn_1.click(
fn=render_result_1,
inputs=[model_id_1, task, *results],
outputs=[*results],
)
load_btn_2.click(
fn=render_result_2,
inputs=[model_id_2, task, *results],
outputs=[*results],
)
task.change(
fn=render_results,
inputs=[model_id_1, model_id_2, task, *results],
outputs=[*results],
)
demo.launch()