import io import json import gradio as gr import pandas as pd from huggingface_hub import HfFileSystem RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results" EXCLUDED_KEYS = { "pretty_env_info", "chat_template", "group_subtasks", } # EXCLUDED_RESULTS_KEYS = { # "leaderboard", # } # EXCLUDED_RESULTS_LEADERBOARDS_KEYS = { # "alias", # } DETAILS_DATASET_ID = "datasets/open-llm-leaderboard/{model_name_sanitized}-details" DETAILS_FILENAME = "samples_{subtask}_*.json" TASKS = { "leaderboard_arc_challenge": ("ARC", "leaderboard_arc_challenge"), "leaderboard_bbh": ("BBH", "leaderboard_bbh"), "leaderboard_gpqa": ("GPQA", "leaderboard_gpqa"), "leaderboard_ifeval": ("IFEval", "leaderboard_ifeval"), "leaderboard_math_hard": ("MATH", "leaderboard_math"), "leaderboard_mmlu_pro": ("MMLU-Pro", "leaderboard_mmlu_pro"), "leaderboard_musr": ("MuSR", "leaderboard_musr"), } SUBTASKS = { "leaderboard_arc_challenge": ["leaderboard_arc_challenge"], "leaderboard_bbh": [ "leaderboard_bbh_boolean_expressions", "leaderboard_bbh_causal_judgement", "leaderboard_bbh_date_understanding", "leaderboard_bbh_disambiguation_qa", "leaderboard_bbh_formal_fallacies", "leaderboard_bbh_geometric_shapes", "leaderboard_bbh_hyperbaton", "leaderboard_bbh_logical_deduction_five_objects", "leaderboard_bbh_logical_deduction_seven_objects", "leaderboard_bbh_logical_deduction_three_objects", "leaderboard_bbh_movie_recommendation", "leaderboard_bbh_navigate", "leaderboard_bbh_object_counting", "leaderboard_bbh_penguins_in_a_table", "leaderboard_bbh_reasoning_about_colored_objects", "leaderboard_bbh_ruin_names", "leaderboard_bbh_salient_translation_error_detection", "leaderboard_bbh_snarks", "leaderboard_bbh_sports_understanding", "leaderboard_bbh_temporal_sequences", "leaderboard_bbh_tracking_shuffled_objects_five_objects", "leaderboard_bbh_tracking_shuffled_objects_seven_objects", "leaderboard_bbh_tracking_shuffled_objects_three_objects", "leaderboard_bbh_web_of_lies", ], "leaderboard_gpqa": [ "leaderboard_gpqa_extended", "leaderboard_gpqa_diamond", "leaderboard_gpqa_main", ], "leaderboard_ifeval": ["leaderboard_ifeval"], # "leaderboard_math_hard": [ "leaderboard_math": [ "leaderboard_math_algebra_hard", "leaderboard_math_counting_and_prob_hard", "leaderboard_math_geometry_hard", "leaderboard_math_intermediate_algebra_hard", "leaderboard_math_num_theory_hard", "leaderboard_math_prealgebra_hard", "leaderboard_math_precalculus_hard", ], "leaderboard_mmlu_pro": ["leaderboard_mmlu_pro"], "leaderboard_musr": [ "leaderboard_musr_murder_mysteries", "leaderboard_musr_object_placements", "leaderboard_musr_team_allocation", ], } fs = HfFileSystem() def fetch_result_paths(): paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") return paths def filter_latest_result_path_per_model(paths): from collections import defaultdict d = defaultdict(list) for path in paths: model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1) d[model_id].append(path) return {model_id: max(paths) for model_id, paths in d.items()} def get_result_path_from_model(model_id, result_path_per_model): return result_path_per_model[model_id] def update_load_results_component(): return gr.Button("Load Results", interactive=True) def load_data(result_path) -> pd.DataFrame: with fs.open(result_path, "r") as f: data = json.load(f) return data def load_results_dataframe(model_id): if not model_id: return result_path = get_result_path_from_model(model_id, latest_result_path_per_model) data = load_data(result_path) model_name = data.get("model_name", "Model") df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}]) # df.columns = df.columns.str.split(".") # .split return a list instead of a tuple return df.set_index(pd.Index([model_name])).reset_index() def display_results(df_1, df_2, task): df = pd.concat([df.set_index("index") for df in [df_1, df_2] if "index" in df.columns]) df = df.T.rename_axis(columns=None) return display_tab("results", df, task), display_tab("configs", df, task) def display_tab(tab, df, task): df = df.style.format(na_rep="") df.hide( [ row for row in df.index if ( not row.startswith(f"{tab}.") or row.startswith(f"{tab}.leaderboard.") or row.endswith(".alias") or (not row.startswith(f"{tab}.{task}") if task != "All" else False) ) ], axis="index", ) start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ") df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index") return df.to_html() def update_tasks_component(): return gr.Radio( ["All"] + list(TASKS.values()), label="Tasks", info="Evaluation tasks to be displayed", value="All", interactive=True, ) def update_subtasks_component(task): return gr.Radio( SUBTASKS.get(task), info="Evaluation subtasks to be displayed", value=None, ) def update_load_details_component(model_id_1, model_id_2, subtask): if (model_id_1 or model_id_2) and subtask: return gr.Button("Load Details", interactive=True) else: return gr.Button("Load Details", interactive=False) def load_details_dataframe(model_id, subtask): if not model_id or not subtask: return model_name_sanitized = model_id.replace("/", "__") paths = fs.glob( f"{DETAILS_DATASET_ID}/**/{DETAILS_FILENAME}".format( model_name_sanitized=model_name_sanitized, subtask=subtask ) ) if not paths: return path = max(paths) with fs.open(path, "r") as f: data = [json.loads(line) for line in f] df = pd.json_normalize(data) # df = df.rename_axis("Parameters", axis="columns") df["model_name"] = model_id # Keep model_name return df # return df.set_index(pd.Index([model_id])).reset_index() def display_details(df_1, df_2, sample_idx): s_1 = df_1.iloc[sample_idx] s_2 = df_2.iloc[sample_idx] # Pop model_name and add it to the column name df = pd.concat([s.rename(s.pop("model_name")) for s in [s_1, s_2] if "model_name" in s], axis="columns") return ( df.style .format(na_rep="") # .hide(axis="index") .to_html() ) # if __name__ == "__main__": latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) with gr.Blocks(fill_height=True) as demo: gr.HTML("