import asyncio import gradio as gr import pandas as pd from huggingface_hub import HfFileSystem import src.constants as constants from src.hub import load_details_file def update_task_description_component(task): base_description = constants.TASK_DESCRIPTIONS.get(task, "") additional_info = "A higher score is a better score." description = f"{base_description}\n\n{additional_info}" if base_description else additional_info return gr.Textbox( description, label="Task Description", lines=6, visible=True, ) def update_subtasks_component(task, profile: gr.OAuthProfile | None): visible_login_btn = True if task == "leaderboard_gpqa" else False subtasks = None if task == "leaderboard_gpqa" and not profile else constants.SUBTASKS.get(task) return ( gr.LoginButton(size="sm", visible=visible_login_btn), gr.Radio( choices=subtasks, info="Evaluation subtasks to be loaded", value=None, ), ) def update_load_details_component(model_id_1, model_id_2, subtask): if (model_id_1 or model_id_2) and subtask: return gr.Button("Load Details", interactive=True) else: return gr.Button("Load Details", interactive=False) async def load_details_dataframe(model_id, subtask): fs = HfFileSystem() if not model_id or not subtask: return model_name_sanitized = model_id.replace("/", "__") paths = fs.glob( f"{constants.DETAILS_DATASET_ID}/**/{constants.DETAILS_FILENAME}".format( model_name_sanitized=model_name_sanitized, subtask=subtask ) ) if not paths: return path = max(paths) data = await load_details_file(path) df = pd.json_normalize(data) df = df.sort_values(by=["doc_id"]) # df = df.rename_axis("Parameters", axis="columns") df["model_name"] = model_id # Keep model_name return df # return df.set_index(pd.Index([model_id])).reset_index() async def load_details_dataframes(subtask, *model_ids): result = await asyncio.gather(*[load_details_dataframe(model_id, subtask) for model_id in model_ids]) return result def display_details(sample_idx, show_only_differences, *dfs): rows = [df.iloc[sample_idx] for df in dfs if "model_name" in df.columns and sample_idx < len(df)] if not rows: return # Pop model_name and add it to the column name df = pd.concat([row.rename(row.pop("model_name")) for row in rows], axis="columns") # Wrap long strings to avoid overflow; e.g. URLs in "doc.Websites visited_NEV_2" def wrap(row): try: result = row.str.wrap(140) return result if result.notna().all() else row # NaN when data is a list except AttributeError: # when data is number return row df = df.apply(wrap, axis=1) if show_only_differences: any_difference = df.ne(df.iloc[:, 0], axis=0).any(axis=1) # Style return ( df.style.format(escape="html", na_rep="") # .hide(axis="index") # Hide non-different rows .hide([row for row in df.index if show_only_differences and not any_difference[row]]) .to_html() ) def update_sample_idx_component(*dfs): maximum = max([len(df) - 1 for df in dfs]) return gr.Number( label="Sample Index", info="Index of the sample to be displayed", value=0, minimum=0, maximum=maximum, visible=True, ) def clear_details(): # model_id_1, model_id_2, details_dataframe_1, details_dataframe_2, details_task, subtask, load_details_btn, sample_idx return ( None, None, None, None, None, None, gr.Button("Load Details", interactive=False), gr.Number(label="Sample Index", info="Index of the sample to be displayed", value=0, minimum=0, visible=False), ) def display_loading_message_for_details(): return "

Loading...

"